

Environmental
Monitoring
with Arduino

Emily Gertz and
Patrick Di Justo

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Environmental Monitoring with Arduino
by Emily Gertz and Patrick Di Justo

Copyright © 2012 Emily Gertz and Patrick Di Justo. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more informa-
tion, contact our corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editors: Shawn Wallace and Brian Jepson
Production Editor: Teresa Elsey
Cover Designer: Mark Paglietti
Interior Designers: Ron Bilodeau and Edie Freedman
Illustrator: Robert Romano

January 2012: First Edition.

Revision History for the First Edition:
January 20, 2012 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449310561 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. Environmental Monitoring with Arduino and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

Important Message to Our Readers: The technologies discussed in this publication, the limi-
tations on these technologies that technology and content owners seek to impose, and the laws
actually limiting the use of these technologies are constantly changing. Thus, some of the projects
described in this publication may not work, may cause unintended harm to systems on which
they are used, or may not be consistent with current laws or applicable user agreements.

Your safety is your own responsibility, including proper use of equipment and safety gear, and
determining whether you have adequate skill and experience. Electricity and other resources
used for these projects are dangerous unless used properly and with adequate precautions, in-
cluding safety gear. These projects are not intended for use by children. While every precaution
has been taken in the preparation of this book, O’Reilly Media, Inc., and the authors assume no
responsibility for errors or omissions. Use of the instructions and suggestions in Environmental
Monitoring with Arduino is at your own risk. O’Reilly Media, Inc., and the authors disclaim all
responsibility for any resulting damage, injury, or expense. It is your responsibility to make sure
that your activities comply with applicable laws, including copyright.

ISBN: 978-1-449-31056-1
[LSI]

1327090789

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449310561

To all our nieces and
nephews, who we hope

will make a more
understandable world.

Contents

Preface . ix

1/The World’s Shortest Electronics Primer . 1

What Is Arduino? . 1

Electronic Circuits and Components . 1

Programming Arduino . 5

First Sketch: Make an LED Blink . 6

Parts . 6

Install the IDE .6

Breadboard the Circuit .6

Write the Code . 7

Things to Try . 9

2/Project: Noise Monitor/LED Bar Output . 11

Measuring Noise: The Microphone . 11

The LED Bar . 12

Make the Gadget . 13

Parts . 13

Breadboard the Circuit .14

Write the Code . 16

Things to Try . 18

3/New Component: 4Char Display . 19

Test Project . 20

Parts . 20

Breadboard the Circuit . 20

Write the Code . 21

Things to Try . 24

4/Detecting Electromagnetic Interference (and making bad music) 25

Detecting EMI Sources in the Environment . 26

Make the Gadget . 27

Parts . 27

The 8-Ohm Speaker . 27

Construct the EMI Monitor . 28

Write the Code . 30

Run the Sketch .31

Contents v

Powering the Gadget in Mobile Mode . 32

What Are We Measuring with This Gadget? . 32

Things to Try . 33

5/Project: Water Conductivity/Numerical Output . 35

What Is Conductivity, and Why Do I Care? . 35

Make the Gadget .35

Parts . 36

Construct the Probe .36

Breadboard the Circuit . 38

Write the Code . 39

How to Take a Reading . 40

Things to Try . 40

6/New Component: Ethernet Shield . 43

Using the Ethernet Shield . 44

The Ethernet Port . 44

The MAC Address .44

The IP Address . 45

The SD Card Slot . 48

Testing the Ethernet Shield . 49

Parts . 49

Assembly . 49

Testing the SD Card Slot . 50

Parts . 50

Assembly . 50

Things to Try . 50

7/Project: Humidity, Temperature & Dew Point/4Char Display 51

You Don’t Have to Be a Weatherman to Measure the Weather 51

Getting Usable Measurements . 52

First Electronic Sensor: The DHT-22 . 54

Using Code Libraries . 54

Make the Gadget .55

Parts . 55

Breadboard the Circuit . 56

Write the Code . 56

Things to Try . 61

8/Real-Time, Geo-Tagged Data Sharing with Pachube 63

Test Project: Connecting and Uploading Data to Pachube 63

Parts . 64

Open a Pachube Account . 64

Write the Code . 65

vi Contents

Things To Try . 66

9/Project: Radiation Counter/Sharing Data on the Internet 67

What’s a Geiger Counter? . 68

Make the Gadget .70

Parts . 71

Breadboard the Circuit . 71

Write the Code .72

What Are We Measuring with This Gadget? . 76

Failure Mode Analysis .77

Things to Try . 78

10/Casing the Gadget . 79

Contents vii

Preface

This book is all about making the invisible visible.

Each project introduces a particular environmental condition, and then
teaches you step by step how to build a small, inexpensive electronic device
that can monitor that condition, and communicate back what it finds.

When you start monitoring the environment, something happens: You start
to understand the world around you in a new way.

Build a water quality tester, and a beautiful, clear-running stream may be-
come a beautiful clear stream with a high particulate count (see Chapter 6).

Build a gadget to measure temperature and humidity, and you’ll see for
yourself that “high noon” is not the hottest part of the day; that actually
comes around 3 p.m. (see Chapter 8).

Build an electromagnetic field detector, and you’ll discover even a quiet
room is buzzing with unseen, unheard electrical vibrations (see Chapter 4).

We usually turn environmental monitoring over to the scientific experts at
government agencies, universities, and corporations. They come armed
with complicated and expensive equipment as well as specialized educa-
tions, and occasionally their own institutional agendas.

Since the natural environment is complex, even more so for all the stuff we
human beings and our activities have added to the mix, this sort of expertise
has an important role in our lives and in our communities. Scientific analysis
and expertise are key to creating effective regulations that control the im-
pacts human activities have on the environment and our health.

Monitoring the environment for ourselves, however, pulls the curtain back
on what all those experts are doing. Understanding brings knowledge, and
with knowledge comes the power to make decisions that can change our
lives for the better—from lowering the electric bill, to holding polluters ac-
countable, to helping scientists study the changing climate.

How to Use This Book
We suggest that you build the projects that follow in the given order, since
they progress from easier to more complex.

If you already have some experience with Arduino, and want more challenges
in making and using these gadgets, look for the “Things to Try” section at
the end of each project chapter. We make suggestions for changing the build
or the programming that will exercise your skills. We hope you’ll come up
with your own ideas, too, and tell us about them.

One straightforward way to increase each project’s difficulty, once you have
built and tested a gadget, is to rebuild it in a more permanent way by sol-
dering the components together. We also offer a few general suggestions
for creating enclosures—handy and rugged cases for your gadgets—at the
end of this book. You can make enclosures as simply or elaborately as you
choose.

Finally: We do our best to describe how to build each gadget as clearly as
possible. But as it’s almost inevitable that even a “simple” project will frus-
trate you now and then, here are some tips to keep things fun and interesting:

Break it down
It may be difficult to get a gadget to work correctly the first time. But
don’t get discouraged! Most of these gadgets didn’t work the first time
for us, either. What we’ve found, and what we think will work for you, is
to break every gadget down into separate components, typically input
and output components.

Don’t skip the preliminaries
Make sure each component works individually before connecting it with
others. If it’s working on its own, it will be much more likely to work when
combined into a gadget.

Save. Back up. Document.
When it comes to coding, this is our mantra:

1. Save: Save your code frequently as you work on it.

2. Back up: Always back up your code to at least one location other
than your hard drive, such as a peripheral drive, memory card, or
flash drive.

3. Document: As you write programming code, include comments
(more on this in Chapter 2) that explain what the code does; when
you look at your code several days later, you might not remember.
As you build a gadget, take notes about what you discover, so that
you can refer to them later.

Do these three simple things consistently, and when your computer
crashes, your laptop falls out of your bag and onto the concrete, or your
cat walks across the keyboard, you will be calm in the knowledge that
you always have a copy of your work safely stored somewhere else.

x Preface

Change only one thing at a time
If you decide to make any changes to the code or the design of these
gadgets (and we heartily encourage you to do so), we suggest that you
change only one thing at a time, and test it before making another
change.

This is important because your change may cause the gadget to stop
working. If you’ve made only one change, it will be easy to undo it and
return to a working version of the gadget. This allows you to move ahead
with confidence, because you know that any glitch is easy to fix.

Mash it up
We’ve done our best to design these gadgets in a modular fashion, so
that with only a little tweaking, you can swap the the input and output
components between them. Want to modify the temperature gadget to
output to Pachube rather than a display? Go for it! The hardware should
be easy to modify, and changing the code will usually be a simple matter
of cutting and pasting from one gadget’s code to the next.

Granted, some swaps don’t seem to make much sense: it might be
rather odd to build a thermometer with an audio output. But give it a try
if you want to. Who knows what you’ll come up with? Here’s our own
favorite mashup so far: If you combine the audio output of the electro-
magnetic field detector with the Geiger counter input, and then tweak
the code just right, you can make an old-fashioned click-click-click ra-
diation detector, just like in the movies. So mix and match! Have fun! Be
bold!

Ask for help
There is absolutely zero shame in asking for help, and there is less than
zero shame in asking for help with an Arduino project. The entire Ar-
duino ecosystem is built on a philosophy of open access to knowledge.
Some people may know more about building circuits or writing code
than you know. You might know more than someone else.

But to a certain extent, no one is an expert, because no one has made
Arduino do everything it can do. Whether online or face-to-face, people
will be happy to help you learn if you’re respectful, gracious, and willing
to share. We guarantee that after weeks of feeling like all you ever do is
ask questions, there is nothing like the thrill you’ll get the first time you’re
able to help someone else solve a problem.

Here are some resources for connecting with fellow Arduino users:

• http://www.arduino.cc: The online home of Arduino features user
forums and more.

Preface xi

http://www.arduino.cc

• http://forums.oreilly.com/: O’Reilly, this book’s publisher, has an
active Arduino user community.

• http://hackerspaces.org/wiki/Hackerspaces: The Hackerspace
Wiki is a good place to start looking for face-to-face maker workshops
and meetups in your area.

Don’t be afraid to experiment
There’s more than one way to put together any device in this book. Don’t
have a 1 megaohm resistor to use in the EMF detector? Try using a 470K
resistor plus a 560K resistor instead. They add up to a bit more than
1 megaohm, but that’s OK.

We know that there are other, perhaps even better ways to build each
and every one of the gadgets shown here. We hope you’ll find them and
let us know about them.The code examples in the following chapters are
available for download at GitHub at the official code repository for this
book. We encourage you to monitor this repository for the latest bug-
fixed code, as well as extended examples by the author and the rest of
the social coding community.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to pro-
gram elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by val-
ues determined by context.

TIP: This icon signifies a tip, suggestion, or general
note.

xii Preface

http://forums.oreilly.com/
http://hackerspaces.org/wiki/Hackerspaces
https://github.com/ejgertz/EMWA/
https://github.com/ejgertz/EMWA/

CAUTION: This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM
of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require per-
mission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Environmental Moni-
toring with Arduino by Emily Gertz and Patrick Di Justo (O’Reilly). Copyright
2012 Emily Gertz and Patrick Di Justo, 978-1-4493-1056-1.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you
easily search over 7,500 technology and creative reference
books and videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our
library online. Read books on your cell phone and mobile devices. Access
new titles before they are available for print, and get exclusive access to
manuscripts in development and post feedback for the authors. Copy and
paste code samples, organize your favorites, download chapters, bookmark
key sections, create notes, print out pages, and benefit from tons of other
time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

Preface xiii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

http://shop.oreilly.com/product/0636920021582.do

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv Preface

http://shop.oreilly.com/product/0636920021582.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

1/The World’s Shortest
Electronics Primer

If you’re a DIY electronics or Arduino novice, the information in this chapter
will help you get the most out of building and programming the gadgets in
this book.

If you’re already building your own electronics, consider this chapter a re-
fresher to dip into as needed.

What Is Arduino?
Arduino is best described as a single-board computer that has deliberately
been designed to be used by people who are not experts in electronics, en-
gineering, or programming. It is inexpensive, cross-platform (the Arduino
software runs on Windows, Mac OS X, and Linux), and easy to program. Both
Arduino hardware and software are open source and extensible.

Arduino is also powerful: despite its compact size, it has about as much
computing muscle as one of the original navigation computers from the
Apollo program, at about 1/35,000 the price.

Programmers, designers, do-it-yourselfers, and artists around the world
take advantage of Arduino’s power and simplicity to create all sorts of inno-
vative devices, including interactive sensors, artwork, and toys.

We built each of the products in this book using the Arduino Uno (Fig-
ure 1-1 and Figure 1-2), which at this writing (late 2011) is the latest model.
By the time you’re reading this, there may be something newer.

It’s not necessary to know Arduino Uno’s technical specifications to build
and program the gadgets in this book. But if you’re interested, you can find
them at the official Arduino website.

Electronic Circuits and Components
An electronic circuit is, as the term implies, electricity moving in a path very
much like a circle. Each circuit has a beginning, a middle, and an end (which
is usually very close to where it began). Somewhere in the middle, the circuit

1

http://arduino.cc/en/Main/ArduinoBoardUno

often runs through various electronic components that modify the electrical
current in some way.

Each device in this book is a circuit that combines Arduino with different
electronic components. Some of these essentially manage the power and
path of the electricity; others sense certain conditions in the environment;
and still others display output about those conditions.

Let’s take a look at some of the components we will be using in our circuits:

Light emitting diodes (LEDs)
An LED is a lamp made of various rare-earth metals, which give off a
large amount of light when a tiny current is run through them. The com-
position of the substances within the LED determine the particular
wavelength of light emitted: green, blue, yellow, red, and even ultraviolet
and infrared are among the possible colors.

Technically, the LEDs used in our gadgets are “miniature LEDs,” tiny
lamps with two wire leads, one long (called the anode) and the other a
bit shorter (called the cathode). These come in various useful forms,
including single lamps from 2mm to 8mm in diameter, display bars, and
alphanumeric readouts, and can serve as indicators, illuminators, or
even data transmitters.

Figure 1-1. Front of the Arduino Uno (Rev. 2).

2 Environmental Monitoring with Arduino

You’ll learn how to use these different types of LEDs while building the
different environmental sensors in this book.

Resistors
Resistors are the workhorses of the electronics world. What do resistors
do? They simply resist letting electricity flow through them, and they do
this by being made of materials that naturally conduct electricity poorly.
In this way resistors serve as small dumb regulators to cut down the
intensity of electric current.

Resistance is valuable because some electronic components are very
delicate, burning out easily if they’re powered with too much current.
Putting a resistor in the circuit ensures that only the proper amount of
electricity reaches the component. It’s hard to imagine any circuit work-
ing without a resistor, and with LEDs resistors are almost mandatory.

While building the projects in this book, you’ll learn various creative ways
to regulate current with resistors.

Figure 1-2. Back of the Arduino Uno.

The World’s Shortest Electronics Primer 3

Soldering
Soldering involves heating up conductive metal, called solder, and then
using it to fuse other pieces of metal together. In small-scale electronics,
we use an electrical tool called a soldering gun, which has a small tip, to
heat up thin wires of solder and drip the solder onto the components we
wish to join into the circuit.

Soldering creates a very stable circuit, and that stability can be a draw-
back. Fusing together components can make it difficult to reuse or re-
configure circuits. You also must be very careful to not short-circuit
components while soldering. It is beyond the scope of this book to to go
into the details of soldering, which can be a very useful skill in DIY elec-
tronics. If you’re interested in learning how, this online resource is a good
place to start.

The alternative to soldering is to use a breadboard.

Solderless breadboards
Solderless breadboards are small plastic boards studded with pins that
can hold wires. (More about these below.) These wires can then be con-
nected to other electronic components, including Arduino.

Solderless breadboards make it much easier to design circuits, because
they allow you to quickly try out various assemblies and components
without having to solder the pieces together. While solderless bread-
boards typically are intended for use only in the design phase, many
hobbyists keep a breadboard in the final version of a device because
they’re so fast and easy to use.

If you don’t feel like soldering circuit boards, solderless breadboards are
the way to go. Each gadget in this book uses a solderless breadboard.

Wire
Wire is the most basic electronic component, creating the path along
which electrons move through a circuit. The projects in this book use
1mm “jumper wires,” which have solid metal tips perfectly sized to fit
into Arduino and breadboard pins, and come sheathed in various colors
of insulation.

Get as much jumper wire as you can afford, in sev-
eral colors. When building circuits with Arduino, you
can’t have too many jumper wires.

4 Environmental Monitoring with Arduino

http://mightyohm.com/files/soldercomic/FullSolderComic_20110409.pdf

We order most of our electronics components from these online retailers:

• Adafruit Industries

• Eemartee

• Electronic Goldmine

• SparkFun

Maker Shed, from MAKE and O’Reilly Media, sells books, kits, and tools, as
well as many of the electronic components needed to build the projects in
this book. Maker Shed also supplies convenient bundles for many of the
projects in this book (you can find more information about these bundles in
the individual project chapters).

Don’t count out your friendly local RadioShack, though. While writing this
book, more than once we ran out to RadioShack for a last-minute
component.

For years RadioShack cut back on its electronic components inventory, ap-
parently seeing a better future for the business by featuring cell phones and
other consumer electronics. But the company has recently begun to em-
brace the maker movement; at this writing, some stores around the country
are even carrying Arduinos. We’re hopeful RadioShack is on the return path
to being the hacker heaven it was years ago.

Programming Arduino
A computer program is a coded series of instructions that tells the computer
what to do. The programs that run on Arduino are called sketches.

The sketches used in this book mostly tell Arduino to read data from one of
the pins, such as the one connected to a sensor; and to write information to
a different pin, such as the pin connected to an LED or display unit.

Sometimes the sketches also instruct Arduino to process that information
in a certain way: to combine data streams, or compare the input with some
reference, or even place the data into a readable format.

An Arduino program has two parts: setup() and loop().

setup()
The setup() part tells Arduino what it needs to know in order to do what
we want it to do. For example, setup() tells Arduino which pins it needs
to configure as input, which pins to configure as output, and (by default)
which won’t be doing anything. If we’re going to use a special type of
output to show our results, such as a four-character display, setup() is
where we tell Arduino how that output works. If we need to communicate

The World’s Shortest Electronics Primer 5

http://adafruit.com
http://www.emartee.com
http://www.goldmine-elec.com
http://www.sparkfun.com
http://www.radioshack.com

with the outside world through a serial port or an Ethernet connection,
all the instructions necessary to make that connection go here.

loop()
loop() tells Arduino what to do with the input or output. Unlike some
other computers, it never stops; once the instructions in a loop have
been executed, Arduino goes right back to the top of the loop() and
starts executing instructions all over again.

First Sketch: Make an LED Blink
By long tradition (going back to 2006), the first Arduino sketch you write is
to make an LED blink.

Arduino pins can be used for input and output, as long as you tell the com-
puter which is which. So in this sketch, we tell the Arduino to set pin 13 to be
the LED OUTPUT pin, and then we alternately send electricity to pin 13 (set-
ting the pin HIGH) and cut off the electricity to pin 13 (setting the pin LOW).
With each alternation, the LED turns on and off.

We’ll write all the sketches in this book using the Arduino “integrated devel-
opment environment” (IDE), which, simply put, is special software for writing
and uploading code to Arduino.

Parts
1. Arduino Uno

2. Breadboard

3. LED

Install the IDE
Download the Arduino IDE from http://arduino.cc/en/Main/Software, and
follow the provided instructions to install it on your computer.

Once you’ve installed the software, open the IDE. You should see a screen
that looks something like Figure 1-3.

Breadboard the Circuit
The circuit portion of this project is very simple:

Take an LED and place the long lead into pin 13 on Arduino, as you can see
in the Figure 1-4 breadboard view.

6 Environmental Monitoring with Arduino

http://arduino.cc/en/Main/Software

Write the Code
You can find this code in the Arduino IDE under File → Examples or on the
EMWA GitHub Repository | chapter-1 | blink.

/*
 Blink
 Turns on an LED on for one second,
 then off for one second, repeatedly.
 This example code is based on example code
 that is in the public domain.
*/

void setup() {
 // initialize the digital pin as an output.
 // Pin 13 has an LED connected on most Arduino boards:
 pinMode(13, OUTPUT);
}

void loop() {
 digitalWrite(13, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // set the LED off

Figure 1-3. The Arduino IDE on a Mac.

The World’s Shortest Electronics Primer 7

https://github.com/ejgertz/EMWA/blob/master/chapter-1/blink

 delay(1000); // wait for a second
}

In this sketch, the code in loop() simply tells Arduino to set pin 13 HIGH—
taking it up to 5 volts—for 1000 milliseconds (one second), followed by set-
ting it LOW—taking it down to 0 volts—for another 1000 milliseconds.

Notice the /* ... */ sections and the // lines in the example above? Those
are ways to put comments into your code to explain to others (and to your-
self) what the code does: /* and */ tell the computer that everything between
those marks should be ignored while running the program. // tells the com-
puter that everything afterward on that line is a comment.

Figure 1-4. LED long lead inserted into pin 13 on the Arduino (image made
with Fritzing.org).

8 Environmental Monitoring with Arduino

Why Comment Code?
Commenting code simply means adding explanations in plain
English to your sketch that describe how the code works. Adding
comments to code is a very good idea. Here’s why:

Suppose, after hours trying to get your Arduino to do something,
the solution suddenly comes to you. Eureka! You hook up your
Arduino, bang out your code, load it up, and voilà: It works.

Fast forward: Months later, working on another project, you want
your Arduino to do something similar to your earlier project. “No
sweat, I’ll just reuse my earlier code,” you think. But you open up
the sketch and…none of it makes sense!

You wrote that earlier code in a highly creative state of mind, when
your brain chemicals were flowing like a river and your ideas were
flashing like summer lightning. In all the excitement, you didn’t
comment your code. So now, months later, when you’re in a com-
pletely different state of mind, you can’t remember what the code
does, and you have to start all over. Is that any way to live?

If you had commented your code from the beginning, you’d know
exactly what each variable was used for, what each function did,
and what each pin controlled. Your life would be so much more
enjoyable.

In short, always take a few minutes to comment your code.

Things to Try
Modify this sketch to make the LED do something different:

1. Blink twice as quickly.

2. Blink twice as slowly.

3. Light up for half a second with a two-second pause between blinks.

Congratulations, you’re an Arduino programmer! Now let’s have some real
fun.

The World’s Shortest Electronics Primer 9

2/Project:
Noise Monitor/

LED Bar Output

We cannot smell, taste, or touch a sound. But noise (which is what most of
us call a sound we don’t like) is one of the most pervasive environmental
contaminants around.

Noise pollution is defined as a sound that is constant, very loud, unwanted,
or disturbing to everyday activities in the places we live, play, work, or learn.
Cars on the street, planes overhead, construction equipment, or your neigh-
bor’s loud TV leaking through the wall—these and more can become noise
pollution. And it’s not merely a case of acute annoyance: According to the
U.S. Environmental Protection Agency, noise pollution is directly linked to
stress and stress-related illnesses (“all that noise is making me sick”), high
blood pressure, fatigue, and hearing loss, among many other adverse
effects.

Even the thick-skinned residents of New York City lose their cool when it
comes to noxious sounds: unwanted noise is far and away the number-one
complaint to the city’s 311 info and services line.

Measuring Noise: The Microphone
Sound is made by the movement of air molecules. When an object vibrates,
it moves back and forth, creating pressure waves that compress the air first
in one direction, and then in the other. These waves of compression travel
outward in all directions from the source of the vibration until they hit an
obstacle and get absorbed, reflected, or attenuated into nothingness.

When the wave reaches our microphone, its pressure causes a membrane
in our microphone to vibrate. As the microphone membrane vibrates, it
changes the magnetic field of a magnet behind it. This varying magnetic field
causes a very small electric current to flow from the microphone’s wires.
That current is what we actually measure with this gadget.

11

Typically a microphone current is very low—so low that Arduino would find
it difficult to detect much variation in the signal. So we chose the Mini Sound
Sensor mic (Emartee part number 42021). This mic comes loaded onto a
breakout board equipped with an amplifier. This particular amp boosts the
signal to one strong enough for Arduino to detect easily, which gives us a lot
to work with.

If the Emartee Mini Sound Sensor isn’t available when you’re reading this
book, a mini microphone from Jameco (part number ECM-60PC-R) should
also work, although it may require some tweaking of the Arduino sketch for
this gadget.

Save the Whales…from Noise Pollution
We’ve been talking about pressure waves moving through the air,
but noise can move just as easily through nearly any continuous
medium: metals, glass, even water. In fact, there is a growing body
of proof that increasing levels of undersea noise, largely caused by
ship engines, are harming social sea mammals like dolphins and
whales.

These animals, which communicate using underwater sound, are
having a harder time talking to one another because of all these
unmuffled engines. Scientists using underwater recording devices
published research in 2010 showing that endangered North At-
lantic right whales are being forced to turn up their call volume to
find each other over the undersea din. If they can’t find each other,
they can’t mate and produce offspring.

Modifying this gadget to listen to ocean noise would make a great
project, albeit a complicated one The microphone would need to
be waterproofed, as well as designed to pick up the frequencies
used by creatures like dolphins and whales. A waterproof housing
would be essential for Arduino itself as well, plus a method to either
store the data (see more about the SD card in “The SD Card
Slot” on page 48) or output the data to a device elsewhere.

If you attempt this, remember to let us know how it turns out!

The LED Bar
The LED bar display, available from SparkFun (sku COM-09935) and other
electronics suppliers, is nothing but a collection of light emitting diodes in a
fancy plastic case (see Figure 2-1). There is no other circuitry. There aren’t

12 Environmental Monitoring with Arduino

http://www.emartee.com/product/41496/Mini%20Microphone
http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_136574_-1
http://www.onearth.org/blog/right-whales-yell-over-noise-pollution
http://www.onearth.org/blog/right-whales-yell-over-noise-pollution
http://www.sparkfun.com/products/9935

even any built-in resistors to regulate the current. For that reason, we stress
strongly that if you do not want to use the LED bar, you certainly don’t have
to.

Feel free to substitute any number of standard LEDs in its place. Just be
certain to change the variable number_of_LEDs in the sketch to reflect the
actual number of LEDs that you use.

One advantage to using individual LEDs is that you can color-code them by
intensity. Try five green LEDs, three yellow LEDs and two red LEDs to give
your readout a sense of urgency.

Make the Gadget

Parts
1. Arduino

2. Breadboard

3. Mini Sound Sensor microphone (Emartee part number 42021)

4. 5–10 LEDs, one or more colors, or LED bar display

Figure 2-1. An LED bar display plugged into a breadboard, along with jumper
wires to connect it to Arduino. You can also create an LED bar display using
individual LEDs, as seen in the breadboard view.

Project: Noise Monitor/LED Bar Output 13

5. 220-ohm resistor

6. 10–15 jumper wires in varied colors

Breadboard the Circuit
You can see what the final build looks like in the breadboard view of this
circuit in Figure 2-2.

Figure 2-2. The completed noise monitor circuit.

Here’s how to build that circuit:

Step 1 Plug the microphone into the breadboard (see Figure 2-3).

Step 2 Connect a wire between the GND pin of the microphone and the GND
pin of Arduino.

Step 3 Connect the power pin of the microphone to the power pin of Arduino.

Step 4 Connect the DATA pin of the microphone to the Analog 0 pin of
Arduino.

Step 5 Connect the Digital 2 pin of Arduino to a point on the breadboard.

14 Environmental Monitoring with Arduino

Figure 2-3. The noise sensor plugged to the breadboard, with jumper wires
leading from its GND, power, and DATA pins.

Step 6 Connect the LONG or ANODE lead of an LED (or the ANODE lead of
an LED bar) to a pin in the same breadboard row as the jumper from D2.
Have the LED straddle the breadboard trench, and plug the SHORT lead or
CATHODE (or the CATHODE lead of an LED bar) to a pin in the corresponding
row on the other side of the breadboard.

Step 7 Plug a 220-ohm resistor into the breadboard, connecting the cathode
row and the GND rail.

Step 8 Connect a wire from the GND rail to the Arduino GND pin.

Repeat steps 5 through 7 nine times—or once for every LED you want to use.
Increase the digital Arduino pin and breadboard row for each LED, to make
a nice row of lights.

To keep yourself from going crazy, don’t use the same color wire for each
LED, since that makes it unbelievably difficult to spot mistakes made by
plugging an LED to the wrong Arduino pin. Alternate colors, or use a whole
rainbow of wires.

Project: Noise Monitor/LED Bar Output 15

Write the Code
You can find this sketch on the EMWA GitHub repository | chapter-2 | Noise-
Monitor.

/*
 Noise Monitor
 Sketch for an Arduino gadget that detects noise.
 This example code is based on example code that is in the public domain.
 */

int sensorPin = A0; // select the input pin for the input device

const int numberOfLEDs = 10;

const int numberOfSamples = 16;
int sample;
long signal[numberOfSamples];
long runningAverage;
long sumOfSamples = 0;
int counter =0;

int threshold[] = { 0, 47, 99, 159, 227, 308, 407, 535, 715, 800, 900};

// You can play with the sensitivity of the LEDs by removing the above
// threshold and using the one below. Try different values. Experiment!
//int threshold[]={ 0, 25, 50, 75, 100, 125, 150, 175, 200, 225};

void setup()
{
 // declare the ledPins as an OUTPUT.
 // We're doing it line-by-line, so you can see what's happening.
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
 pinMode(4, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
 pinMode(11, OUTPUT);

 // setting each pin to LOW so as not to light the LED
 digitalWrite(2, LOW);
 digitalWrite(3, LOW);
 digitalWrite(4, LOW);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 digitalWrite(7, LOW);
 digitalWrite(8, LOW);

16 Environmental Monitoring with Arduino

https://github.com/ejgertz/EMWA/blob/master/chapter-2/NoiseMonitor
https://github.com/ejgertz/EMWA/blob/master/chapter-2/NoiseMonitor

 digitalWrite(9, LOW);
 digitalWrite(10, LOW);
 digitalWrite(11, LOW);

 // set the analog 0 pin to input
 pinMode(sensorPin, INPUT);

 // Getting a baseline noise signal
 for(int i =0; i <=numberOfSamples; i++)
 {
 sample = analogRead(sensorPin);

 signal[i] = abs(sample -512);
 sumOfSamples = sumOfSamples + signal[i];
 }

 // Tests the LEDs by turning them on.
 // This time, we're using a for() loop to do the job.
 // Using for(), while(), and other loops is probably
 // how you should handle tasks like this.
 for(int i=0; i <=numberOfLEDs; i++)
 {
 digitalWrite(i+1, HIGH);
 delay(100);
 }

 // ... and then turning them off.
 for(int i=0; i <=numberOfLEDs; i++)
 {
 digitalWrite(i+1, LOW);
 delay(100);
 }

 Serial.begin(9600);
}

void loop()
{
 // We want to take a "running average" of the output of the
 // microphone. We started getting a baseline average back
 // in setup(). Now, we're subtracting the oldest sound
 // sample from the running total, taking a new sound sample,
 // adding that to the running total, and taking the average.
 // This gives us a "typical" sound sample.

 // Here we increase our counter, to keep track of how many
 // audio samples we're taking. If we use more than the number
 // of samples, use the % (modulo) operator to set the counter to zero.

 counter = ++counter % numberOfSamples;

Project: Noise Monitor/LED Bar Output 17

 // subtract the oldest sample from our total audio sample
 sumOfSamples -= signal[counter];

 // take a new audio sample
 sample = analogRead(sensorPin);

 // assign the sample to an array, normalize and adjust it to remove
 // negative values
 signal[counter] = abs(sample -512);

 // Add the most recent sample to the total audio sample
 sumOfSamples = sumOfSamples + signal[counter];

 // And (this is the key part), take an average of all the samples
 runningAverage = sumOfSamples/numberOfSamples;

 Serial.print("Running Value = ");
 Serial.println(runningAverage);
 Serial.println(" ");

 // light up the LEDs
 for (int i =0; i <=numberOfLEDs; i++)
 {
 // Then see if the average sound meets that LED's threshold value
 if(runningAverage>threshold[i])
 {
 // if so, light the LED
 digitalWrite(i+1, HIGH);
 delay(10);
 }
 }

 // turn all LEDs off from right to left. This keeps the display
 // "active", like the display on an audio amplifier
 for (int i =numberOfLEDs; i >=1; i--)
 {
 digitalWrite(i+1, LOW);
 }
}

Things to Try
1. Adapt the device for underwater listening, as suggested earlier.

2. Adjust the code so that the LEDs display the loudest noise on a sliding,
not fixed, scale.

3. Leave the “maximum” LED lit for a few seconds.

18 Environmental Monitoring with Arduino

3/New Component:
4Char Display

In the next project, we’re going to display our data on a serially driven four-
character LED display (see Figure 3-1). This is a wonderfully versatile little
tool that incorporates four seven-segment LED displays that show, natch,
four characters of data at a time (as well as a colon and decimal points).

The four-character display can show all of the Arabic numerals from 0 to 9,
as well as 20 of the 26 letters used in English, some of them in both upper
and lower cases. To see how they look, check out Figure 3-2. (There are some
pseudoconventions for displaying the letters k, m, v, w, and x, but if you use
them, most people won’t recognize them as letters—some of them look just
like random illuminated segments—and will think there’s something screwy
with the display).

“Serially driven” is the distinction that makes this display so useful. With a
standard seven-segment display, each segment of the display needs its own
dedicated data line from Arduino to control it. Using four characters in this
type of display architecture (along with the associated decimal points and
colon) would require 34 dedicated data lines, more than the standard Ardu-
ino even has. (Granted, there are tricks to get around this, but even then, the
display would still need a lot of lines.)

So the people at SparkFun, who make this product, added a microcontroller
to the back of the display. This microcontroller can take serial data sent from
a single Arduino pin and interpret it to properly control all four display
characters.

But every boon has a price. In this case, the boon is that we need only two
dedicated data lines to use the 4Char; the price is that you must format your
data so that it is sent in groups of four characters at a time. Always. No ex-
ceptions. Do you have only three characters to display? Too bad. You must
add a space or a legend character so that you’re feeding exactly four char-
acters to the display. If you have five or more characters to display, you must
format your data into four-character chunks and add some code to make
your data scroll past the display.

19

Test Project
To get a feel for how the 4Char display works, let’s wire it up and run some
sample code.

Parts
1. Arduino

2. Breadboard

3. 4Char display (SparkFun sku COM-09765)+

4. Jumper wires in various colors

Breadboard the Circuit
This is a very simple circuit to build, as you can see in the breadboard view
Figure 3-3.

Step 1 Connect a jumper from Arduino GND to the GND pin on the 4Char.

Step 2 Place the jumper through the GND hole on the display, and anchor it
in the breadboard. (It doesn’t matter which breadboard row you use. Try not
to use one of the rails.)

Figure 3-1. Front (left) and back (right) of the 4Char LED display.

Figure 3-2. How English letters look on the seven-segment, four-character
display.

20 Environmental Monitoring with Arduino

Step 3 Connect a jumper between Arduino digital pin 3 and the RX pin on
the 4Char. Once again, put the jumper through the RX hole in the display,
and anchor it to the breadboard.

Write the Code
The following sample sketch includes tips as to what your 4Char display can
do. You can find it on EMWA GitHub repository | chapter-3 | 4Char.

Load it onto Arduino.

/*
 4Char Test
 Sketch in Programming to test a scrolling 4Char display.
 The traditional 'first code' is to display "Hello World", but
 the 4char can't display the letter "w". So we improvise...
 This example code is based on example code that is in the public domain.
*/

#include <SoftwareSerial.h>

#define SerialIn 2
#define SerialOut 3

Figure 3-3. The completed 4char test circuit.

New Component: 4Char Display 21

https://github.com/ejgertz/EMWA/blob/master/chapter-3/4Char

#define Xdelay 600

String txtmessage = "HELLo ThErE";

byte thou=0;
byte hund=0;
byte tens=0;
byte ones=0;

SoftwareSerial mySerialPort(SerialIn, SerialOut);

void setup()
{
 pinMode(SerialOut, OUTPUT);
 pinMode(SerialIn, INPUT);

 // open communications with the 4char display
 mySerialPort.begin(9600);

 // the 'v' character resets the display
 mySerialPort.print("v");

}

void loop()
{
 // light up all segments as a test
 mySerialPort.print("----");
 delay(Xdelay);
 mySerialPort.print("8888");
 delay(Xdelay);
 mySerialPort.print("----");
 delay(Xdelay);
 mySerialPort.print("xxxx");
 delay(Xdelay);

 // scroll from 1 to 0 the simple but tedious way
 mySerialPort.print("xxxx");
 delay(Xdelay);
 mySerialPort.print("xxx1");
 delay(Xdelay);
 mySerialPort.print("xx12");
 delay(Xdelay);
 mySerialPort.print("x123");
 delay(Xdelay);
 mySerialPort.print("1234");
 delay(Xdelay);
 mySerialPort.print("2345");
 delay(Xdelay);

22 Environmental Monitoring with Arduino

 mySerialPort.print("3456");
 delay(Xdelay);
 mySerialPort.print("4567");
 delay(Xdelay);
 mySerialPort.print("5678");
 delay(Xdelay);
 mySerialPort.print("6789");
 delay(Xdelay);
 mySerialPort.print("7890");
 delay(Xdelay);
 mySerialPort.print("8900");
 delay(Xdelay);
 mySerialPort.print("9000");
 delay(Xdelay);
 mySerialPort.print("0000");
 delay(Xdelay);

 // Count from -1009 to 2000

 for(int i = -1009; i<2000; i++)
 {
 if((i<-999) || (i>9999))
 {
 mySerialPort.print("ERRx");
 return;
 }
 char fourChars[5];
 sprintf(fourChars, "%04d", i);

 mySerialPort.print("v");
 mySerialPort.print(fourChars);

 //add a delay if the numbers go by too fast
 //delay(Xdelay);

 }

 delay(Xdelay);
 mySerialPort.print("xxxx");
 delay(Xdelay);

 // Scroll a txtmessage a more complicated way
 // First add the appropriate buffer
 txtmessage = "xxxx"+txtmessage+"xxxxx";
 // then convert from String object to char array,
 // which is the only thing SoftwareSerial can print
 char temps[txtmessage.length()];
 txtmessage.toCharArray(temps,txtmessage.length());

 // then scroll through the txtmessage
 for(int i = 0; i <= txtmessage.length()-5; i++)

New Component: 4Char Display 23

 {
 mySerialPort.print(temps[i]);
 mySerialPort.print(temps[i+1]);
 mySerialPort.print(temps[i+2]);
 mySerialPort.print(temps[i+3]);
 delay(Xdelay);
 }

 delay(Xdelay);
 delay(Xdelay);
 delay(Xdelay);
}

Did it work? Way to go! You’ve successfully programmed a scrolling 4Char
display.

Things to Try
1. The LED 4Char display product user guide from SparkFun describes

how to control each individual segment of the display, as well as the
colon, apostrophe, and decimal points. Can you use this knowledge to
create a countdown timer that counts from 59:59 to 00:00?

2. Suppose you really needed to use this display to show the letters k, m,
v, w, or x. For example, if you absolutely had to display the words my
wax Vostok (though we can’t think of why you would), how would you
do it? Which segments would you light up?

24 Environmental Monitoring with Arduino

http://www.sparkfun.com/datasheets/Components/LED/7-Segment/YSD-439AB4B-35.pdf

4/Detecting
Electromagnetic

Interference
(and making

bad music)

The gadget we’re going to build next can detect electromagnetic interfer-
ence (EMI), and give you a rough idea of the intensity of the EMI signal.

EMI is a form of electromagnetic radiation: a combination of electric and
magnetic waves traveling outward from anywhere that an electrical power
signal is changing or being turned on and off rapidly.

Sometimes, an electrical device that has the potential to give off EMI is very
carefully shielded to prevent the interference from escaping; however, a
great many devices that emit EMI are shielded not at all or very lightly.

Since EMI is a type of radio signal, this gadget is essentially a type of radio.
We won’t be listening for any particular station or program, however. We’re
listening for electromagnetic energy being emitted from various electronic
devices in the local environment, and converting that into an output that our
human senses can detect.

Where this gadget excels is spotting “phantom” or “vampire” energy loads.
More correctly called standby power, this is the amount of electricity that
constantly flows through some electronic devices, even when they’re sup-
posedly switched off or in standby mode. Devices use standby power on
features such as digital clocks, remote control reception, and thermome-
ters. Relatively weak energy efficiency regulations in the United States result
in many devices drawing far more wattage than they need in standby mode.

The result? Phantom load accounts for 10% or more of the average U.S.
household’s home energy use. In 2009, that added $15.65 billion or more to
the nation’s domestic electric bill (about $125 a year per household), as well
as 836 million metric tons of greenhouse gas pollution to the atmosphere.

25

Once you’ve found the energy vampires, a brief guide from NRDC’s Smarter
Living website and the “Energy Savers” booklet from the U.S. Department
of Energy offer tips to cut back their energy use. But the easiest way to start
curbing pollution and saving money is to pull the plug.

Detecting EMI Sources in the
Environment
Moving the EMI detector around our home offices revealed a fascinating
variety of unsuspected energy vampires. The Toshiba laptop computer we
use for development gives off a phenomenal amount of EMI. The office tel-
evision, a 1998 cathode ray tube model from Sony, gave off even more. This
makes sense, because the TV is essentially built to give off EMI. (That light-
saber-like hum you hear from very old televisions? EMI artifacts.)

Strangely enough, the WiFi router emitted very little EMI, at least in the range
that this detector can spot.

The most surprising phantom load that we found with the EMI detector came
from the office stereo system, a component bookshelf model. The 4Char lit
up and the speaker squealed from several feet away.

It turns out that the stereo system uses nearly as much electricity turned off
as our netbook does turned on.

Demystifying Radiation
The term “radiation” often scares people when it comes to envi-
ronmental monitoring, because it’s used for several similar but not
identical phenomena.

Radiation simply refers to something that radiates outward from
a source. In the case of uranium and plutonium, the stuff being
radiated outward is subatomic particles, which have been proven
very dangerous to living tissue. In the case of EMI, the stuff being
radiated is electromagnetic waves.

We’ve been living with human-created EMI radiation for 100 years,
and only in the case of very high energies has it been shown to
cause any harm.

26 Environmental Monitoring with Arduino

http://www.simplesteps.org/articles/co2-smackdown-step-11-defang-energy-vampires
http://www.simplesteps.org/articles/co2-smackdown-step-11-defang-energy-vampires
http://www.energysavers.gov/tips/

Make the Gadget
This gadget is one of the simplest environmental sensors you can make. All
it does is connect an antenna to one of Arduino’s analog ports and output
the results as numbers and sounds.

There are some things about this device and how it works that make more
sense once you’ve actually created and used it. So we’ve included that in-
formation after the build.

Parts
1. Arduino

2. 8-ohm speaker

3. 4Char display

4. 1-megaOhm resistor

5. 3–5 feet of solid core wire

6. Battery pack

7. Red and black jumpers

The 8-Ohm Speaker
We’re going to be using a standard 8-ohm speaker as the output. This is
probably the most common kind of hobby audio output, one of the most
basic (and oldest) electronic devices.

Simply put, a speaker is an electromagnet connected to a membrane. Var-
iations in an electric current cause the electromagnet to turn on and off. This
moves the membrane back and forth, which moves air molecules back and
forth, which causes what we call sound.

If the movement is done rapidly enough, and if the voltage signal can be
precisely controlled, the speaker will emit sound we can recognize—like mu-
sic, or a person talking.

Before we begin to build the gadget, let’s be sure the 8-ohm speaker works:

Step 1 Plug your 8-ohm speaker into Arduino, as shown in the breadboard
view (Figure 4-1): the red wire into digital pin 8 and the black wire into GND.

Step 2 Find the sketch “ToneMelody” in the IDE at File | Examples | Digital
| ToneMelody. Load it onto Arduino and run it.

Detecting Electromagnetic Interference (and making bad music) 27

In the sketch, the header file pitches.h tells the Arduino which audio fre-
quencies correspond to which musical notes. The sketch then includes the
data for a little eight-note melody, in two arrays—one containing the notes,
and the other containing the duration of those notes. The sketch then plays
these tones through Arduino pin 8.

Did you hear a pleasing little melody when you ran the sketch? Then it
worked. If not, check your connections, and try again. Make sure that the
speaker is plugged into Arduino pin 8 (and not any other pin) and GND.

Construct the EMI Monitor
Step 1 Cut a three-foot long piece of solid core wire (Figure 4-2).

Step 2 Strip about 1.5 inches from one end of the core wire.

Step 3 Wrap one end of the 1MOhm resistor around the stripped end of the
core wire.

Figure 4-1. The speaker’s red wire should be inserted in digital pin 8 and the
black wire in GND.

28 Environmental Monitoring with Arduino

Step 4 Insert the wire into analog port A5 on Arduino, and the end of the
resistor into GND.

Step 5 Connect one lead of the 8-ohm speaker to digital port 9 on Arduino,
and the other lead into GND, as shown in the breadboard view (Figure 4-3).

Step 6 Connect the lead of the 4Char to digital pin 7 on Arduino and the other
lead into GND.

Figure 4-2. Solid core wire, used as the “antenna” for the EMI detector.

Detecting Electromagnetic Interference (and making bad music) 29

Figure 4-3. EMI detector: one lead of 8-ohm speaker connected to GND pin
on Arduino, the other to digital port 8.

Write the Code
Load the following sketch onto Arduino, and you’ve got yourself an EMI
detector:

// Arduino Electromagnetic interference detector
// Code modified by Patrick Di Justo, based on
// Aaron ALAI EMF Detector April 22nd 2009 VERSION 1.0
// aaronalai1@gmail.com
//
// This outputs sound and numeric data to the 4char

#include <SoftwareSerial.h>
#define SerialIn 2
#define SerialOut 7

#define wDelay 900

int inPin = 5;
int val = 0;

SoftwareSerial mySerialPort(SerialIn, SerialOut);

void setup()

30 Environmental Monitoring with Arduino

{
 pinMode(SerialOut, OUTPUT);
 pinMode(SerialIn, INPUT);

 mySerialPort.begin(19200);
 mySerialPort.print("vv");

 mySerialPort.print("xxxx");
 delay(wDelay);
 mySerialPort.print("----");
 delay(wDelay);
 mySerialPort.print("8888");
 delay(wDelay);
 mySerialPort.print("xxxx");
 delay(wDelay);

 Serial.begin(9600);
}

void loop()
{
 val = analogRead(inPin);
 Serial.println(val);
 dispData(val);
 val = map(val, 1, 100, 1, 2048);
 tone(9,val,10);
}

void dispData(int i)
{
 if ((i<-999) || (i>9999))
 {
 mySerialPort.print("ERRx");
 return;
 }
 char fourChars[5];
 sprintf(fourChars, "%04d", i);

 mySerialPort.print("v");
 mySerialPort.print(fourChars);
}

Run the Sketch
Once you have uploaded your sketch to Arduino, and Arduino restarts, you’ll
probably hear a cacophony of sound from the speaker, and the numbers on
the 4Char display will be so random as to seem meaningless. That’s perfectly
all right; they are meaningless.

Detecting Electromagnetic Interference (and making bad music) 31

Because Arduino is connected by a USB cable to your computer, it is re-
ceiving a flood of electromagnetic interference from the computer. Even
worse, that EMI is being pumped into Arduino via the USB cable.

To make this detector really work, we’ve got to go mobile.

Powering the Gadget in Mobile Mode
When not operating off the USB cable, Arduino needs a power supply of 7 to
12 volts to work. Anything higher than 12 volts might damage the circuitry;
anything lower than 6 volts won’t start Arduino at all.

A fresh 9-volt battery should be enough to get this gadget running.

Step 1 Carefully unplug the Arduino from the USB cable.

Step 2 Snap the power connector to the top of the 9-volt battery, and plug
the round end into the power input on Arduino.

Your Arduino should start up normally: the LEDs mounted on the Arduino
board should flash, and within a few seconds the EMI code should be up and
running.

What Are We Measuring with This
Gadget?
Now that you’ve successfully built the mobile EMI detector, we can explain
what it is measuring.

Arduino’s analog input normally takes a reading of the electrical energy
coming into the analog port. But because we have connected an antenna to
that port, the antenna is absorbing electrical voltage from the radio signals
given off by electronic equipment, and directing it into the analog port.

Arduino analog’s port can take voltage from zero to a maximum of 5 volts,
and it measures this voltage in 1024 discrete slices (making each slice worth
0.0048828 volts). For example, when Arduino tells us that the reading from
the analog port is, say, 250, it is telling us that the antenna wire is picking up
1.2207 volts of EMI energy (250 × 0.0048828).

32 Environmental Monitoring with Arduino

The Truth Is Out There
Do a little online research into EMI detectors (sometimes called
EMF detectors), and you’ll quickly discover people who claim to
use electromagnetic disturbances to “detect” paranormal activity
such as ghosts, poltergeists, and spirits.

Sorry to go all Scully on you, but we’ve yet to encounter compelling
evidence that ghosts exist—or, if they do, that they obey the rules
of electromagnetic propagation.

Anyone who wishes to use this EMI detector to go ghost hunting
probably can’t be stopped. But please: don’t contact us for advice
or argument, and don’t say you read it here first.

The raw number from the analog port is then sent to the speaker, where it is
converted to a tone, and to the 4Char, where it is displayed as a value.

The rapidly changing nature of the EMI voltage picked up by the antenna
gives rise to rapidly changing tones, ranging from a low electronic growl to
a high pitched electric squeal.

The voltage induced in the antenna wire is very de-
pendent on the length of the wire. It seems pretty
obvious: a longer wire can collect more voltage than
a shorter one. If you want consistent results from
your EMI detector, make certain that you reuse the
same wire every time, or at least a wire of the same
length.

Things to Try
1. What happens if you make the wire shorter? If you make the wire longer?

If you coil the wire into a circle? Does the detector become more sensi-
tive? Less sensitive?

2. What are some other ways to display the data you obtain? A row of LED
lights, as in the noise sensor?

Detecting Electromagnetic Interference (and making bad music) 33

5/Project:
Water Conductivity/

Numerical Output

The conductivity meter is probably the simplest environmental meter in this
book. Its workings rely upon the fact that pure water does not actually carry
an electric charge very well. So what we’re really doing with this device is
assessing the concentration of conductive particles that are floating in the
(mostly nonconductive) water.

What Is Conductivity, and Why Do I
Care?
Water is very seldom just the sum of its basic chemical formula: two atoms
of hydrogen and one of oxygen. Typically, water is a mixture that also in-
cludes other substances that have dissolved into it, including minerals, met-
als, and salts. In chemistry, water is the solvent, the other substances the
solutes, and combined they make a solution.

Solutes create ions: atoms that carry an electric charge. These ions are what
actually move electricity through water.

That’s why measuring conductivity is a good way to learn how pure (really,
how impure) a water sample may be: the more stuff that’s dissolved in the
watery solution, the faster electricity will move through it.

Make the Gadget
To make this device, we’ll start by constructing the probe that you’ll dip into
water samples to get a conductivity reading—which we created by repur-
posing a binding post (Radio Shack catalog #274-718) typically used in home
audio/video and ham radio electronics. It may seem like a complicated build
on first glance, because there are several steps involved. But it’s mostly a
straightforward matter of connecting wires to the binding post—as you can
see in the photo of the finished probe.

35

http://www.radioshack.com/product/index.jsp?productId=2102838

Water and Electricity Don’t Mix…Right?
All our lives we’ve been told to keep water and electricity far apart
for our safety. Lifeguards order swimmers out of the water when
lightning threatens. Electricians wire bathroom power outlets es-
pecially to prevent water-based electric shocks. We’re told not to
drive through flooded streets if there are downed power lines in
the water.

So how can we say that water is not very conductive?

Well, it’s all relative. Compared to air, water is highly conductive.
One reason lightning bolts are so powerful is that they need enor-
mous energy to overcome the electrical resistance of the air. How-
ever, when compared to metal, which conducts electricity ex-
tremely well, water is so resistant that it is practically an insulator.

Parts
1. Arduino

2. Breadboard

3. 10K resistor

4. 8-ohm speaker

5. 4Char display

6. Chassis-mount dual female binding post (RadioShack catalog
#274-718)

7. Jumper wires in various colors

8. Several feet of insulated solid core wire

9. Small piece of aluminum foil

10. 4-inch adjustable wrench

11. Distilled water (can be purchased at some pharmacies or health food
stores)

Construct the Probe
Check your work by comparing it to the photo of a completed probe (Fig-
ure 5-1).

Step 1 Cut two three-foot lengths of solid core wire and two four-inch lengths
of solid core wire.

36 Environmental Monitoring with Arduino

Step 2 Strip about an inch of insulation off both ends of each long wire. Strip
one inch of insulation off one end of each short wire, and one and a half inches
off the other end.

Step 3 Unscrew the binding post’s black and red knobs partway (they won’t
come all the way off), so that you can see the hole drilled through each of the
two posts.

Step 4 Insert a stripped end of one long length of solid core wire through
one of the holes, and then screw that post’s knob back down until it is holding
the wire securely in place. Clip the tip of the wire flush with the knob, so that
you won’t accidentally stab yourself with it later when using the probe. Re-
peat with the other post and the second long length of wire.

Step 5 Using the small adjustable wrench, unscrew the outermost nuts on
the opposite, bare metal ends of each post, until they are about halfway up
the post (but still engaged with the threads).

Step 6 Wrap the one-inch stripped end of one short length of wire around
one of the posts, in between the two nuts. Then screw the loosened nut back
down until the wire is held tightly between the two nuts. Repeat for the other
short length of wire and the other post.

Step 7 Bend these wires so that they extend straight past the ends of the
posts.

Figure 5-1. The probe!

Project: Water Conductivity/Numerical Output 37

Step 8 Shape the ends of these wires into small spirals, and then neatly fold
a small piece of aluminum foil—just a few inches—over and around each
spiral to cover. Position these two “paddles” so that their flat surfaces are
parallel to each other and about 1 centimeter apart.

Breadboard the Circuit
Check your work by comparing it to the breadboard view of the completed
circuit (Figure 5-2).

Step 1 Connect one jumper from the probe to Arduino analog pin A5. Con-
nect the other to a row in the breadboard.

Step 2 Add a 10K resistor (color code brown-black-orange) to the bread-
board, in the same row as the jumper from the probe. Have the resistor
bridge the gap between both sides of the breadboard.

Step 3 Connect a ground jumper from the GND pin on Arduino to the bread-
board, in the same row as the 10K resistor.

Step 4 Connect a data jumper from the breadboard to Arduino Analog pin
A0. Note carefully that the data jumper starts on the same row as the resistor
and GND jumper, but before the resistor. This is extremely important. The
circuit will not work otherwise.

Figure 5-2. The completed water conductivity circuit.

38 Environmental Monitoring with Arduino

Write the Code
You can find this code on the EMWA GitHub repository | chapter-5 | Water-
Conductivity.

Load the following sketch onto Arduino.

/*
 Water Conductivity Monitor
 Sketch for an Arduino gadget that measures the electrical
 conductivity of water.
 This example code is based on example code that is in the public domain.
*/

const float ArduinoVoltage = 5.00; // CHANGE THIS FOR 3.3v Arduinos
const float ArduinoResolution = ArduinoVoltage / 1024;

const float resistorValue = 10000.0;
int threshold = 3;

int inputPin = A0;
int ouputPin = A5;

void setup()
{
 Serial.begin(9600);
 pinMode(ouputPin, OUTPUT);
 pinMode(inputPin, INPUT);
}

void loop()
{
 int analogValue=0;
 int oldAnalogValue=1000;
 float returnVoltage=0.0;
 float resistance=0.0;
 double Siemens;
 float TDS=0.0;

 while(((oldAnalogValue-analogValue)>threshold) || (oldAnalogValue<50))
 {
 oldAnalogValue = analogValue;
 digitalWrite(ouputPin, HIGH);
 delay(10); // allow ringing to stop
 analogValue = analogRead(inputPin);
 digitalWrite(ouputPin, LOW);
 }

 Serial.print("Return voltage = ");
 returnVoltage = analogValue *ArduinoResolution;
 Serial.print(returnVoltage);

Project: Water Conductivity/Numerical Output 39

https://github.com/ejgertz/EMWA/tree/master/chapter-5
https://github.com/ejgertz/EMWA/tree/master/chapter-5

 Serial.println(" volts");

 Serial.print("That works out to a resistance of ");
 resistance = ((5.00 * resistorValue) / returnVoltage) - resistorValue;
 Serial.print(resistance);
 Serial.println(" Ohms.");

 Serial.print("Which works out to a conductivity of ");
 Siemens = 1.0/(resistance/1000000);
 Serial.print(Siemens);
 Serial.println(" microSiemens.");
 Serial.print("Total Dissolved Solids are on the order of ");
 TDS = 500 * (Siemens/1000);
 Serial.print(TDS);
 Serial.println(" PPM.");
 if (returnVoltage>4.9) Serial.println("Are you sure this isn't metal?");

 delay(5000);
}

How to Take a Reading
To use this device, first open a “serial monitor” window in the Arduino IDE.
This is where your water conductivity readings will appear.

Pour some of the distilled water into a glass, and set it down a couple feet
away from your computer, Arduino, and circuit, such that they wouldn’t be
damaged if the glass were to accidentally tip over.

Dip the probe’s two “paddles” into the water, and watch the serial monitor
window for the readings to appear. Since distilled water is nearly free of sol-
utes, the conductivity should be quite low.

To take further readings on this or other water samples, simply press the
reset button on Arduino.

Things to Try
1. Build a conductivity meter without Arduino. This small gadget will give

you a very broadly accurate (i.e., not very accurate at all) idea of the
conductivity of a sample of water: Simply connect an LED to a 1-mega-
ohm resistor to a 9-volt battery. This will give you a binary sense of the
water’s electrical conductivity: if the LED lights up, the water is conduc-
tive. if it doesn’t, the water is not very conductive (we told you it wasn’t
very accurate).

2. Improve the accuracy of this device by calibrating the gadget and using
different resistors in the circuit. Take a known quantity of distilled water

40 Environmental Monitoring with Arduino

(say, 1000 milliliters) and add a known quantity of salt (say 1 gram) to
it. That will give you a calibration solution of 1000 parts per million. By
using different resistors until the LED just comes on, you can make a
conductivity meter that checks for water with varying levels of dissolved
solids.

3. Try making different calibration solutions and using different resistors
to find when the LED comes on. You’ll end up with a chart of different
conductivities, and highly accurate ways to test for them.

Project: Water Conductivity/Numerical Output 41

6/New Component:
Ethernet Shield

Arduino does many interesting things on its own, but it can’t do everything.
Fortunately, thanks to the open design of Arduino, building add-on boards
to extend what Arduino can do is pretty easy.

These boards are called “shields,” because they usually fit over the top of
Arduino like a protecting shield.

Shields contain their own circuitry, components, and sometimes processing
chips that can augment Arduino’s capabilities. There are shields that enable
Arduino to read GPS signals, drive robot motors, take pictures, connect to
Bluetooth devices, control electroluminescent wire…as of this writing, there
are more than 300 shields. Keep up to date on shields at http://shieldlist.org.

In our opinion, the Ethernet shield (Figure 6-1 and Figure 6-2) is the most
important Arduino shield, and the first one you should make or buy. Hooking
your Arduino to an Ethernet connection can put it on the Internet, and once
that’s done your options become nearly endless. Want to use your Arduino
to set up a small web server? No problem. Place data online for other people
to see? Simple. Send tweets via Twitter? Easy breezy!

Notice how the Ethernet shield is shaped very much like Arduino? It’s been
built that way to be compatible: the pins in an Ethernet shield reach down-
ward into Arduino’s sockets and make a firm connection.

The Ethernet shield also has sockets with the same layout and the same
functions as Arduino itself. This means that you can plug the shield into Ar-
duino and then forget it. Each gadget in this book can be plugged into an
Arduino+Ethernet shield combo as easily as into Arduino itself. In fact, usu-
ally we keep our Ethernet shield plugged into Arduino at all times, and de-
velop our gadgets that way.

43

http://shieldlist.org

Using the Ethernet Shield
Let’s take a look at the Ethernet shield’s special features.

The Ethernet Port
The Ethernet shield we use comes from SparkFun (sku DEV-09026). It re-
quires a standard RJ-45 cable (the cable that looks like a fat landline phone
cord). One end of the RJ-45 cable plugs into the shield, while the other end
plugs into your Internet router or possibly your cable modem. It will most
likely be plugged into your router.

The MAC Address
At the bottom of the shield, or in the packaging, you should see a sticker
printed with a cryptic sequence of letters and numbers, something like “90-
A2-DA…” and so on. This is the shield’s Media Access Control (MAC)
address.

Figure 6-1. Front of the Ethernet shield.

44 Environmental Monitoring with Arduino

http://www.sparkfun.com/products/9026

A MAC address is a completely unique identifier for anything that is going to
be connected to the Internet. Everything you own that connects to the In-
ternet, from your computer to your digital music player to your mobile
phone, has a unique MAC address.

For the devices that you don’t program, you normally don’t need to be con-
cerned with the MAC address. But in this book, you’ll be programming your
Ethernet shield, so knowing the MAC address is vital.

So write down the MAC address of your Ethernet shield somewhere safe,
and DO NOT REMOVE THE STICKER. Since all Ethernet shields look alike,
the easiest way you’ll be able to tell one from another is by reading the MAC
address sticker. An Ethernet shield without a known MAC address is an an-
noyance you don’t want to deal with.

The IP Address
You’ll also need to know the Internet Protocol (IP) address for your router.
This is the number that gets assigned to every device on a local network. For
most routers sold in North America, the default IP address is 192.168.1.1.

Figure 6-2. Back of the Ethernet shield.

New Component: Ethernet Shield 45

(Apple routers often default to an IP address of 10.0.1.1, because that’s how
Apple rolls.)

The good thing about this is that if you don’t know what your router address
is, and you are not using an Apple product, 192.168.1.1 is probably the correct
IP address.

Find your router’s IP address: Windows

1. Click on Network Connections. (See Figure 6-3.)

2. Right-click a network connection.

3. Click Status, and then click the Support tab.

4. The “Default gateway” is the router’s IP address, which in this case is
indeed 192.168.1.1.

5. Also, take note of the Subnet Mask (255.255.255.0). You might need it
later on.

Figure 6-3. The network connections panel in Windows.

46 Environmental Monitoring with Arduino

Find your router’s IP Address: Mac

1. Open System Preferences.

2. Under the options for Internet & Wireless, select Network.

3. On the Network panel, be sure that your current Internet connection
method (likely either AirPort or Ethernet) is selected in the left menu,
and that your current location is selected on the Location pull-down
menu.

4. Still on the Network panel, click the Advanced button, located toward
the lower right.

5. A list of networks will drop down into view, with a row of options along
the top. On this row, find and click TCP/IP.

6. You will see your Router address, which is indeed 192.161.1.1, as shown
in Figure 6-4.

7. Also, take note of the Subnet Mask (255.255.255.0). You might need it
later on. (You can ignore the IPv4 address.)

Figure 6-4. The Advanced Network preferences panel in Mac OS X.

New Component: Ethernet Shield 47

The SD Card Slot
The SD card slot is a wonderful bonus of the Ethernet shield. It allows you to
write and read (store and retrieve) data to and from a microSD card. We’ve
tested ours with a 4 GB microSD card, and it works like a charm.

You may want to buy a microSD card that comes with a full-size SD card
adapter (Figure 6-5), or buy an adapter separately, because this will enable
you to swap the card back and forth between Arduino and conventionally
sized card readers or slots.

Figure 6-5. The MicroSD card can be moved between your Ethernet shield
and an adapter sized for the typical SD card slot on a computer.

Because the signals for the SD card slot and the
Ethernet port travel over the same circuitry, Ardu-
ino can only use one of these devices at a time. For
practical purposes, this shouldn’t matter much, but
be aware of it while writing sketches that use both
the SD card slot and the Ethernet port.

48 Environmental Monitoring with Arduino

Testing the Ethernet Shield
The Ethernet shield is an essential part of the rest of the gadgets in this book.
So let’s test it to be sure it works before building anything with it.

Parts
1. Arduino

2. Ethernet shield

Assembly
Step 1 Attach the Ethernet shield to Arduino.

Step 2 Plug the shield into your Internet router.

Step 3 Find the sketch “Web Server” in the Arduino IDE, under File | Exam-
ples | Ethernet | WebServer, or on EMWA GitHub repository | chapter-6 |
WebServer. Load it onto Arduino.

Be certain to insert the MAC address of your Ether-
net shield and the IP address you wish to give to
your Arduino into the following sketch. A good rule
of thumb is to add 20 to the IP address of your
router, which should ensure that your Arduino
doesn’t have the same address as other devices on
your local network (as long as you have no more
than 20 devices on the network.) That is, if your
router is at IP address 192.168.1.1, make your Ar-
duino’s IP address 192.168.1.21.

Step 4 When you’ve uploaded the sketch to Arduino, and the sketch is run-
ning, go to your computer, open up your Internet browser (Chrome, Safari,
Firefox, Internet Explorer, or whichever), and enter your Arduino’s IP ad-
dress into the address bar.

You should see a very simple little web page, resembling what the Web
looked like in 1994. Congratulations! Your Arduino is now a web server on
the Internet.

New Component: Ethernet Shield 49

https://github.com/ejgertz/EMWA/blob/master/chapter-6/WebServer
https://github.com/ejgertz/EMWA/blob/master/chapter-6/WebServer

Testing the SD Card Slot
Now we want to test the SD card slot, since it can be used in all the subse-
quent gadgets in this book.

Parts
1. Arduino

2. Ethernet shield

3. microSD card

Assembly
Step 1 Insert the microSD card into the holder.

Step 2 Load the sketch “SD card read/write,” which you can find in the IDE
under File | Examples |SD |ReadWrite or on EMWA GitHub repository | chap-
ter-6 | SDCardReadWrite.

Step 3 If the Arduino successfully reads “testing 1, 2, 3” from the SD card
and displays it on the serial output, the SD card slot works.

If instead, the serial output displays the words “error opening test.txt,” there
is an error somewhere and you’ll need to do some troubleshooting.

Things to Try
1. Can you write a sketch that displays meaningful data on a web page?

2. Can you write a sketch that displays data on a web page and saves it to
the SD card?

50 Environmental Monitoring with Arduino

https://github.com/ejgertz/EMWA/blob/master/chapter-6/SDCardReadWrite
https://github.com/ejgertz/EMWA/blob/master/chapter-6/SDCardReadWrite

7/Project: Humidity,
Temperature & Dew
Point/4Char Display

Weather may be the most fundamental experience we have of the natural
world. Every day we make decisions based on present and near-future en-
vironmental conditions: Do I need a coat? Should I bring an umbrella? Can I
bicycle to work, or do I need to catch the train?

You Don’t Have to Be a Weatherman to
Measure the Weather
We put a lot of effort into controlling how the weather affects us. We build
structures that shield us from rain, snow, wind, and sun. We create all sorts
of specialty textiles, and use them in complex garments to protect ourselves
from the elements when we go outdoors. And we use lots of electricity to
power systems that keep us comfortably warm or cool, as well as devices
that put moisture into the air or suck it dry.

Weather is so important to our personal and economic well-being that a
government agency is devoted to doing nothing but predicting and tracking
the weather and keeping the public informed. One of the most popular chan-
nels on cable TV devotes almost every hour of every day to reporting nothing
but weather. Dozens of computer, smartphone, and tablet apps exist to do
one thing: hook us into the latest info about the weather.

In other words, it’s high time makers take on some independent monitoring
of the weather. With Arduino, we can measure the basics: temperature, hu-
midity, and dew point. Further, we can collect these measurements over
time to create a weather record by saving the data to an SD card, using the
Ethernet shield’s SD card slot.

51

What’s Dew Point?
The dew point, simply put, is the temperature at which moisture
condenses to form dew. A low dew point temperature indicates
drier conditions, while a higher dew point temperature means wet-
ter conditions.

To find the dew point, our device takes current temperature and
humidity readings, and performs a calculation to determine how
saturated the air is with water.

Dew point is a particularly important weather factor in transpor-
tation, because in low temperatures it can help predict whether ice
will form on airplane exteriors, roads, or train tracks.

Getting Usable Measurements
There are a lot of variables involved in getting accurate temperature read-
ings. Are you measuring the temperature indoors or outdoors? In a closed
stuffy room, or in one with lots of ventilation? Over a black asphalt driveway
or over relatively cool white concrete, in full sunlight or in the shade?

These widely varied conditions can result in wildly different readings, even
if they’re taken at the exact same moment.

Weather professionals have developed a method to ensure they’re all meas-
uring temperature the same way across multiple outdoor locations. They
place a thermometer in a Cotton Region Shelter (CRS), a white-painted
pinewood box with a solid top, slatted sides, and a slotted bottom, and place
it five to six feet off the ground.

The CRS protects the thermometer from sun, rain, snow, and more—from
everything except air temperature.

You don’t need a CRS in order to use this gadget (though building one would
be an awfully cool project—here are some sample specs from the National
Weather Service). But we do recommend that you find a way to create con-
sistent conditions when you use it.

Indoors, this should be fairly easy. Find a place to keep the gadget that em-
ulates the advantages of a CRS: out of direct sunlight, away from heating or
cooling vents, several feet off the ground.

Outdoors, however, you’re going to need something more like a CRS, some-
thing that is waterproof but allows for circulation of air around the sensor.

52 Environmental Monitoring with Arduino

http://www.weather.gov/pa/faq.php#q17

Weather and Climate:
What’s the Difference?

The next time the ground somewhere in the country is covered in
drifts of snow, and temperatures stay frigid for several days on
end, it probably won’t be long before you hear a TV pundit say
something like, “Get a load of this cold! So much for global
warming.”

This confused pundit is giving voice to a common misunderstand-
ing: the difference between weather and climate.

Weather is the blanket term for the immediate atmospheric con-
ditions in the environment right around us right now, and in the
coming hours and days—cloud cover, wind, temperature, precip-
itation, and more.

Climate, on the other hand, is a concept that’s much broader in
both time and space. Climate is the aggregate over several years
of a geographic area’s temperature, precipitation, humidity, and
more. In climate science, researchers typically look at weather
patterns as well as other factors (such as ice cover in the Arctic)
over a decade or longer to find trends.

When we discuss the impacts of anthropogenic (human-caused)
climate change, we’re talking about weather trends that have been
tracked over years and decades.

The major driver of human-propelled climate change is the buildup
in the atmosphere of heat-trapping greenhouse gas pollution from
power plants, transportation, burning forests, and manufacturing.
The sun’s heat can move through these greenhouse gases to reach
the Earth’s surface, but they prevent some of the reflected heat
from going back into space.

A little of this is a good thing: The buildup of heat-trapping gases
in the atmosphere helped warm ancient Earth enough to support
living organisms. But human activities since the Industrial Revo-
lution of the mid-1700s have put much more greenhouse gas into
the atmosphere than at any time in human history, increasing the
Earth’s surface temperature just enough to alter weather and cli-
mate conditions, in ways we’re still trying to completely
understand.

Project: Humidity, Temperature & Dew Point/4Char Display 53

Citizen Climate and Weather Science
Gathering sufficient weather data to understand climate trends
can be a scientist’s life work. But researchers sometimes turn to
the public for help gathering data, by creating “citizen science”
collaborations. These can range from digitizing old weather re-
cords, to making observations outdoors, to taking environmental
measurements.

One good resource for finding these collaborations is SciStarter.
Search on “Climate and Weather” to find projects; there are typi-
cally dozens to choose from.

First Electronic Sensor: The DHT-22
This gadget requires a manufactured electronic sensor, since there is not
much point to building a device to measure warmth, coldness, and humidity
unless it returns data in standard, precisely calibrated units of
measurement.

The sensor we selected is the DHT-22 (Figure 7-1), manufactured by Aosong
Electronics of China. The DHT-22 uses a polymer capacitor to sense the
temperature and humidity, measuring the temperature of the air between
–40 and 80 degrees Centigrade (which Arduino can convert to Fahrenheit),
and the relative humidity between 0 and 100%.

The necessary calibration information is stored in a tiny 8-bit computer in-
side the DHT-22, and each unit is tested in the factory. In other words, this
sensor is ready to use right out of the box.

The DHT-22 has four pins, but only three are used. When looking at the sen-
sor face-on, the leftmost pin is for voltage to power the sensor (anywhere
from 3.3 to 6 volts; we’ll use the 3.3 volt pin on Arduino); the second pin
outputs data from the sensor to the Arduino; the third pin is null (not con-
nected to anything); and the rightmost pin is GND.

Using Code Libraries
With this project, we start doing something new: using code libraries.

A library is a chunk of code that is specifically written to do a common task.
Sensor code libraries give makers the means to access the functions of a
sensor (as well as other electronic components) fairly confidently, because
the code has been tested by the author and updated by people who use it.

54 Environmental Monitoring with Arduino

http://scistarter.com/

Many sensors, including the DHT-22, have their own sensor code libraries,
found on repositories like GitHub. The DHT-22’s library was written and
placed on GitHub by Ben Adams for hobbyists to use in building
microprocessor-based gadgets that include this sensor. This saves every-
one the trouble of duplicating his effort. (We’ve also forked a DHT-22 code
library from Ben Adams’s repository, containing updates that will enable the
sensor to work with the autumn 2011 Arduino 1.0 code update.)

Before you tear your hair out writing a sensor code library from scratch,
search around to see if one already exists. You’ll be glad you did. If you do
end up writing an original code library, consider sharing it with fellow makers
on a site like GitHub.

Make the Gadget
This build has several finicky steps. Look at the breadboard view (Fig-
ure 7-2) to see how it all fits together.

Parts
1. Arduino

2. Ethernet shield

3. Breadboard

4. DHT-22 sensor

Figure 7-1. The DHT-22 sensor

Project: Humidity, Temperature & Dew Point/4Char Display 55

https://github.com
https://github.com/nethoncho/Arduino-DHT22
https://github.com/ejgertz/Arduino-DHT22
https://github.com/ejgertz/Arduino-DHT22

5. 4Char display

6. 4.7K resistor

7. Red and black jumper wires

Breadboard the Circuit
Step 1 Power the breadboard rails.

Step 2 Connect a red jumper wire from the 3.3v pin on the Arduino to the
voltage (red) rail on the breadboard, and a black jumper from the GND pin
to the ground (black) rail on the breadboard.

Step 3 Connect a short red jumper from the voltage rail to the voltage (left-
most) pin of the DHT-22 temperature and humidity sensor.

Step 4 Connect a short black jumper from the GND rail to the GND (right-
most) pin of the DHT-22.

Step 5 Connect a green jumper from the DATA (second from the left) pin
on the sensor to digital pin 4 on the Arduino.

Step 6 Add a 4.7K resistor between the DATA pin of the sensor and the
VOLTAGE pin.

Step 7 Connect a green jumper from Arduino pin 3 to the RX (rightmost) pin
of the four-character display, and a black jumper from the GND rail to the
GND (leftmost) pin of the four-character display.

Write the Code
Load the following sketch onto Arduino. You can find it at EMWA GitHub
repository | chapter-7 | TempHumidDewpoint.

/*
 Temperature-Humidity-Dew Point Monitor
 This sketch gathers temperature and humidity data via a DHT22 sensor,
 and also calculates dew point based on those measurements.
*/

#include <SoftwareSerial.h>
#include <stdlib.h>

#define DHT22_ERROR_VALUE -99.5

#define DHT22_PIN 4

typedef enum
{
 DHT_ERROR_NONE = 0,

56 Environmental Monitoring with Arduino

https://github.com/ejgertz/EMWA/tree/master/chapter-7
https://github.com/ejgertz/EMWA/tree/master/chapter-7

 DHT_BUS_HUNG,
 DHT_ERROR_NOT_PRESENT,
 DHT_ERROR_ACK_TOO_LONG,
 DHT_ERROR_SYNC_TIMEOUT,
 DHT_ERROR_DATA_TIMEOUT,
 DHT_ERROR_CHECKSUM,
 DHT_ERROR_TOOQUICK
} DHT22_ERROR_t;

class DHT22
{
 private:
 uint8_t _bitmask;
 volatile uint8_t *_baseReg;
 unsigned long _lastReadTime;
 float _lastHumidity;
 float _lastTemperature;

 public:
 DHT22(uint8_t pin);
 DHT22_ERROR_t readData(void);
 float getHumidity();
 float getTemperatureC();
 void clockReset();
};

// Set up a DHT22 instance

Figure 7-2. The completed circuit for the temperature-humidity-dew point
monitor.

Project: Humidity, Temperature & Dew Point/4Char Display 57

DHT22 myDHT22(DHT22_PIN);

#define SerialIn 2
#define SerialOut 3
#define WDelay 900

byte thou=0;
byte hund=0;
byte tens=0;
byte ones=0;

SoftwareSerial mySerialPort(SerialIn, SerialOut);

void setup(void)
{
// start serial port
Serial.begin(9600);
Serial.println("DHT22 Library Demo");
pinMode(SerialOut, OUTPUT);
pinMode(SerialIn, INPUT);
mySerialPort.begin(9600);
mySerialPort.print("v");
mySerialPort.print("xxxx");
delay(WDelay);
mySerialPort.print("----");
delay(WDelay);
mySerialPort.print("8888");
delay(WDelay);
mySerialPort.print("xxxx");
delay(WDelay);
}

void loop(void)
{
 float tempC;
 float tempF;
 float humid;
 float dewPoint;

 DHT22_ERROR_t errorCode;

 delay(2000);
 errorCode = myDHT22.readData();
 Serial.print(errorCode);

 switch(errorCode)
 {
 case DHT_ERROR_NONE:
 Serial.print("Temperature: ");
 tempC = myDHT22.getTemperatureC();

58 Environmental Monitoring with Arduino

 Serial.print(tempC);
 Serial.print("C Humidity: ");

 dispData((int)tempC, 'C');

 tempF = (tempC*1.8)+32;

 delay(WDelay);
 dispData((int) tempF, 'F');
 delay(WDelay);

 humid = myDHT22.getHumidity();

 Serial.print(humid);
 Serial.println("%");

 dispData((int)humid, 'h');
 delay(WDelay);

 dewPoint = calculateDewpoint(tempC, humid);
 dispData((int) dewPoint, 'd');
 Serial.print(dewPoint);
 Serial.println("d");
 delay(WDelay);
 break;
 case DHT_ERROR_CHECKSUM:
 Serial.print("Error Cheksum");
 break;
 case DHT_BUS_HUNG:
 Serial.print("Bus Hung");
 break;
 case DHT_ERROR_NOT_PRESENT:
 Serial.print("Not Present");
 break;
 case DHT_ERROR_ACK_TOO_LONG:
 break;
 case DHT_ERROR_SYNC_TIMEOUT:
 break;
 case DHT_ERROR_DATA_TIMEOUT:
 break;
 case DHT_ERROR_TOOQUICK:
 break;
 }
}

float calculateDewpoint(float T, float RH)
{
 // approximate dew point using the formula from
 // Wikipedia's article on dew point
 float dp = 0.0;
 float gTRH = 0.0;

Project: Humidity, Temperature & Dew Point/4Char Display 59

 float a = 17.271;
 float b = 237.7;

 gTRH = ((a*T)/(b+T))+log(RH/100);
 dp = (b*gTRH)/(a-gTRH);

 return dp;
}

void dispData(int i, char c)
{
 if (c == 'k' || c=='K' || c=='m' || c=='l' || c == 'v' ||
 c=='V' || c=='W' || c=='Z' || c=='w' || c=='z')
 {
 mySerialPort.print("bAdx");
 return;
 }

 if ((i<-999) || (i>9999))
 {
 mySerialPort.print("ERRx");
 return;
 }

 mySerialPort.print("v");

 if (i > 999) { // i between 1000 and 9999 inclusive
 mySerialPort.print(i, DEC);
 } else if (i > 99) { // i between 100 and 999, inclusive
 mySerialPort.print(i, DEC);
 mySerialPort.print(c);
 } else if (i > 9) { // i between 10 and 99 inclusive
 mySerialPort.print(i, DEC);
 mySerialPort.print("x");
 mySerialPort.print(c);
 } else if (i > 0) { // i between 1 and 9 inclusive
 mySerialPort.print("x");
 mySerialPort.print(i, DEC);
 mySerialPort.print("x");
 mySerialPort.print(c);
 } else if (i < -99) { // i between -100 and -999, inclusive
 mySerialPort.print(i, DEC);
 mySerialPort.print(c);
 } else if (i < -9) { // i between -10 and -99, inclusive
 mySerialPort.print(i, DEC);
 mySerialPort.print(c);
 } else if (i < 0) { // i between -1 and -9 inclusive
 mySerialPort.print(i, DEC);
 mySerialPort.print("x");
 mySerialPort.print(c);

60 Environmental Monitoring with Arduino

 }
}

Things to Try
1. Write your weather data to a web page and/or an SD card. Modify the

code examples found in the Arduino IDE under Examples | Ethernet |
WebServer, and Examples | SD | Datalogger to work with our sketch.

2. If you create the webpage, adjust your network settings so that the
whole world can see it, instead of only the computers on your local
network.

Project: Humidity, Temperature & Dew Point/4Char Display 61

8/Real-Time,
Geo-Tagged Data

Sharing with Pachube

Your weather data doesn’t have to be lonely. Pachube is a London-based
database service center through which developers (like you) can connect
geographically-oriented sensor data to the Web and share it with others.

(Yes, it looks like it should be pronounced “patch-OOO-bee,” but it is in fact
pronounced “patch-bay.” This is a geek inside joke of such depth and com-
plexity it would take several pages to explain it. The short version is that in
engineering, a patch bay is a place to hook lots of different electronic devices
together, and that’s exactly what Pachube does.)

Through the use of fairly simple application programming interfaces (APIs),
Pachube can take data from your environmental monitoring device, store it
online, and graph it for others to see online. If enough people put enough
data into Pachube, a great deal of information can emerge.

Pachube was primarily a geek thing until March 2011, when a major earth-
quake and tsunami led to reactor meltdowns at Japan’s Fukushima nuclear
power station. Unhappy with the radiation information they were getting
from their government, many Japanese makers did exactly what you’re
about to do—they connected their Geiger counters to the Internet, geo-
tagged the readings, and shared that data online. This enabled them to cre-
ate and share radiation maps of Japan quickly and independently of data
provided by either the power utility or the government.

Test Project: Connecting and Uploading
Data to Pachube
To get started using Pachube, you must first open up a Pachube account.
We’ll walk through that below, and then upload some test data to the site.

63

Parts
1. Arduino

2. Ethernet shield

3. Ethernet cable

Open a Pachube Account
Step 1 Go to the Pachube home page and click on Sign Up Now.

Step 2 For now, choose the free Pachube Basic plan.

Step 3 Fill out the registration form with a username, email, password, and
verification.

Step 4 When you receive the account verification email from Pachube, click
on the enclosed link. It should bring you back to the Pachube site.

Step 5 Once back on Pachube, click on Create a New Link, and fill in the data
for your feed.

Online Privacy
You don’t have to set a location marker on Pachube. If you do, it
might not always be the wisest thing to indicate your precise lo-
cation to people on the Web, especially if you will be gathering data
from your house. If you are under 18, check with your parents
about what to do; if they don’t want you revealing your home to
people on the Internet, don’t. If you are over 18, use your best
judgment. One way to keep your data useful while maintaining your
privacy is to place your location marker near, but not precisely on,
your actual location.

Step 6 When you’re done filling in the data, click Save.

Step 7 While still on Pachube, under My Account, click on My API Keys.

Under Your Master API Key, you’re going to see a 43-character jumble of
uppercase and lowercase letters, numbers, and the occasional punctuation
mark. This is your API key, and it is like saying “open sesame” to the Pachube
servers. When your Arduino transmits this code, Pachube will know that it
belongs to you and no one else, and it will give your Arduino full access to
update your feeds.

The API key is as powerful as a password, and it should not be shared with
anyone you wouldn’t trust with your password. Specifically, if you’re asking

64 Environmental Monitoring with Arduino

http://www.pachube.com

someone for help with Pachube, never include your API key in demo code,
email it to anyone, or post it in a forum.

With your Pachube API key in hand, as well as your Ethernet IP address and
MAC address (from your Ethernet shield set-up in Chapter 6), you’re now
ready to test a data upload to Pachube.

Write the Code
Now you’ll test your connection to Pachube.

Step 1 Carefully put your Arduino and Ethernet shield together.

Step 2 Connect an Ethernet cable from the port on the shield to a port on
your router.

Step 3 Load the sketch “Pachube Sensor Client” onto Arduino. You can find
it in the IDE under FILE | EXAMPLES | PACHUBE CLIENT or on EMWA GitHub
repository | chapter-8 | PachubeSensorClient. As always, substitute infor-
mation about your components and your Pachube account for the place-
holders in the sketch:

1. Replace the MAC address in the code with your Ethernet shield’s MAC
address.

2. Replace the Ethernet IP address in the code with your Ethernet IP ad-
dress.

3. Replace the gateway numbers in the code with your router address.

4. Replace YOUR_FEED_HERE with the number of your feed.

5. Replace YOUR_KEY_HERE with the 43-digit Pachube API key. It would
probably be better to cut and paste it from the Pachube website than to
type it in by hand.

Step 4 Run the sketch. If some data appears on the screen, congratulations:
you’ve made the connection to Pachube!

If nothing happens, run through Steps 1–4 again to troubleshoot your build
and code:

• Check that the Arduino and Ethernet shield are joined correctly.

• Be sure you’re using the correct MAC address, Ethernet IP address, and
other information about your components and your Pachube account.

• Check that you’ve correctly inserted the information about your com-
ponents and your Pachube account into the sketch, and removed the
placeholders from the sketch.

Real-Time, Geo-Tagged Data Sharing with Pachube 65

https://github.com/ejgertz/EMWA/blob/master/chapter-8/PachubeSensorClient
https://github.com/ejgertz/EMWA/blob/master/chapter-8/PachubeSensorClient

Things To Try
Share some location-specific temperature and humidity data on Pachube.

66 Environmental Monitoring with Arduino

9/Project:
Radiation Counter/

Sharing Data on the
Internet

Let’s be blunt: measuring radiation levels in the environment is a tricky busi-
ness, usually best left to the professionals. It’s easy to come up with data
that will scare you for no good reason, and it’s a challenge to compare your
data in useful ways to data collected by others.

What’s more, few of us will ever face the risk of being exposed to excessive
amounts of radiation.

In this chapter, we are talking about atomic radia-
tion, not the electromagnetic radiation covered
earlier in this book. These are different phenomena
with similar names. For a refresher, see the side bar
on Demystifying Radiation in Chapter 4.

So, why are we going to teach you how to build your own Geiger counter with
Arduino, and how to share your readings online with people around the
world?

First, because it’s a fun and challenging thing to do. Second, because recent
history shows that the professionals don’t always plan for everything, leaving
gaps that makers can help fill. As we mentioned in the previous chapter,
that’s what happened in March 2011, after northeastern Japan was hit by a
9.0 earthquake, followed minutes later by a 49-foot-high tsunami.

The twin disasters knocked out grid and backup electricity, respectively, to
the Fukushima One (Fukushima Dai’ichi) nuclear power station in Futuba,
located about 150 miles north of Tokyo. This shut down crucial cooling sys-
tems for the reactors, as well as pools in the reactor buildings holding

67

super-hot spent fuel rods. The devastating wave also destroyed a network
of radiation monitors around the plant.

Fukushima One’s three working reactor cores, as well as their spent fuel
pools, overheated far past their safety points, leading to a complex nuclear
crisis (one beyond the scope of this book to explain) and several leaks of
dangerous radioactive materials into the atmosphere. Lacking nearby radi-
ation monitors, officials had trouble assessing the releases, leaving people
in Japan and around the world understandably angry and frightened for their
health and the environment.

On both sides of the Pacific, people who happened to have Geiger counters
began monitoring radiation levels wherever they were, comparing them to
government data, and sharing this information online with systems like
Pachube.

As we write, these networks are still going and growing. Hackers who colla-
borated over the Fukushima disaster (Emily covered this in an April 2011
article for OnEarth Magazine, “Got iGeigie? Radiation Monitoring Meets
Grassroots Mapping”) have created the Safecast citizen sensor network for
monitoring radiation worldwide.

Using Arduino as the backbone of a DIY Geiger counter, we’ll show you how
to join them.

It’s Never Too Soon to Start
Don’t wait for an emergency to begin monitoring your local rads.
Common substances, like the concrete, brick, and marble used in
building construction, often emit minute, nonharmful amounts of
radiation. It’s important to know the highs and lows of this “back-
ground radiation” in the local environment over weeks, months,
and even years, so that significant increases in that radiation level
are easier to detect.

What’s a Geiger Counter?
When you break it down, a Geiger counter is not a very complicated device.
In fact, it has more than a few things in common with the EMI monitor de-
scribed in an earlier project. Just as the EMI monitor used a wire to detect
electromagnetic radiation, the radiation detector uses a wire in the middle
of a gas-filled metal tube to detect the charged particles given off by radio-
active atoms.

68 Environmental Monitoring with Arduino

http://www.onearth.org/blog/citizen-radiation-monitoring-meets-grassroots-mapping
http://www.onearth.org/blog/citizen-radiation-monitoring-meets-grassroots-mapping
http://blog.safecast.org/

As the heart of our radiation detector, we’ll be using the Sensitive Geiger
Counter (sku C6979ASB) from Electronic Goldmine. To save time, we
bought our Geiger counter already assembled, but if you’re feeling daring,
you can save some money by getting yours in kit form and assembling it
yourself.

The Soviet-era SBM-20 detection tube of our Geiger counter is filled with a
low-pressure mixture of neon, bromine, and argon gases. A high-voltage
transformer charges a wire inside the tube with 450 volts of electricity, and
an output device alerts us when the tube detects a particle. With our model,
there are two output devices: a flashing LED and a speaker to make the
“click” the public has come to expect from a Geiger counter.

The outside of the metal tube is connected to the ground. When no radiation
is present, the gas does not conduct any electricity from the wire to the
tube’s metal casing. But when ionizing radiation enters the tube, the gas
molecules become ionized (i.e., they lose an electron, resulting in positively
charged atoms and free electrons floating around the tube). These electri-
cally charged particles can complete a circuit between the tube’s metal cas-
ing and the internal wire, which results in a short sharp shock to the gadget’s
circuitry.

This shock is passed to a speaker to produce an audible click, to a lamp or
LED to produce a flash of light, or to an internal counter to display the number
of clicks the tube receives per minute. (Some fancy Geiger counters have all
three types of output.)

When a particle is detected, the Geiger tube is mo-
mentarily charged with high-voltage electricity. The
current is not very strong, so it shouldn’t harm you
if you accidentally touch the circuitry—but don’t be
a smart-aleck about it. What might not be harmful
to you will almost certainly be harmful to the elec-
tronic components of this device. Shorting out the
circuitry with your hand will more than likely be the
end of your Geiger counter. For that reason, don’t
touch the Geiger counter when it is powered up.

Project: Radiation Counter/Sharing Data on the Internet 69

http://www.goldmine-elec-products.com/prodinfo.asp?number=C6979ASB

If you’ve electrically connected your Geiger counter
to your Arduino, and then electrically connected
your Arduino to your computer or to your Internet
router, an unexpected short circuit in the Geiger
counter can fry it, your Arduino, your computer,
and your router. Don’t risk it. Make a nice wooden
or plastic case for your Geiger counter, and keep
your contact with the circuitry to a minimum.

Because of the danger a short circuit might cause to our equipment, we’re
going to forgo an electrical connection between the Arduino and Geiger
counter. Instead we’re going to “optoisolate” the two. Optoisolation is a pro-
cess of transferring electrical signals between electronic devices using light
(optic-) instead of electricity, to ensure that voltage spikes from one device
can’t damage components in the other. Since the entire point of a Geiger
counter is to produce voltage spikes, we consider this a prudent precaution.

We’re fortunate that the our Geiger counter has very bright flashing LED
output. To read that flash, we’ll be using a phototransistor from a
RadioShack infrared emitter and detector package (catalog #276-0142).
The phototransistor looks just like a clear LED (and it has a lot in common
with an LED), but it is specially designed to detect light, not to emit it. We’ll
be using it to detect the flashing light of our Geiger counter.

Make the Gadget
Although monitoring radiation can be tricky, building this gadget is pretty
straightforward. More complexity comes in when programming Arduino and
uploading radiation readings to Pachube.

The Infrared Emitter
The infrared emitter is unmistakable—it looks like a funky gray
LED. But the collector is essentially indistinguishable from a clear
LED unless you look very carefully along the vertical axis. The col-
lector looks dark gray when seen from above, while a clear LED
looks light gray when seen from above. For this reason, we suggest
you keep the emitter and detector in a special place in your parts
box, apart from other components—you can go crazy trying to find
the collector in a sea of clear LEDs.

70 Environmental Monitoring with Arduino

http://www.radioshack.com/product/index.jsp?productId=2049723

Parts
1. Arduino

2. Ethernet shield

3. Breadboard

4. Geiger counter

5. IR collector (RadioShack catalog #276-0142)

6. 1k resistor (color code brown, black, red)

7. Long solid strand wire, 18–22 gauge

8. 1 package of heat-shrink tubing. We used tubing from RadioShack (cat-
alog #278-1611); you can use others.

Breadboard the Circuit
Check your work on the breadboard view (Figure 9-1).

Step 1 Connect one end of a long red wire to the collector lead (the shorter
lead) on the IR detector and the other into a row on the breadboard.

Step 2 Connect one end of a long black wire to the emitter lead (the longer
lead) on the IR detector. Plug the other end into a different row on the bread-
board.

Step 3 Connect a jumper wire from the emitter on the detector to GND on
Arduino.

Step 4 Insert the 1K resistor into the same row on the breadboard as the
long red wire from the detector.

Step 5 Connect a jumper wire from the 5v pin on Arduino to the resistor on
the breadboard.

Step 6 Connect a jumper wire from digital pin 2 on Arduino to the place on
the breadboard where the collector wire meets the 1K resistor.

Project: Radiation Counter/Sharing Data on the Internet 71

http://www.radioshack.com/product/index.jsp?productId=2062662
http://www.radioshack.com/product/index.jsp?productId=2062662

Figure 9-1. The Geiger counter input.

Step 7: We’re going to use the output of the Geiger counter (specifically the
flashing LED) as the input to our Arduino.

1. Isolate the LED with a bit of heat-shrink tubing.

2. Place the IR detector atop the Geiger counter LED. Leave a tiny gap so
that they do not touch.

3. Use a blow-dryer to heat-shrink the connector.

That’s it!

Write the Code
Upload the following sketch to Arduino. You can find it on EMWA GitHub
repository | chapter-9 | radiation-pachube-sketch.

/*
 This code, which assumes you're using the official Arduino Ethernet
 shield, updates a Pachube feed with your analog-in values and grabs
 values from a Pachube feed--basically it enables you to have both
 "local" and "remote" sensors. Tested with Arduino 1.0.

 Pachube is www.pachube.com--connect, tag and share real time sensor data
 code by usman (www.haque.co.uk), may 2009
 copy, distribute, whatever, as you like.

 v1.1 - added User-Agent & fixed HTTP parser for new Pachube headers

72 Environmental Monitoring with Arduino

https://github.com/ejgertz/EMWA/blob/master/chapter-9/radiation-pachube-sketch
https://github.com/ejgertz/EMWA/blob/master/chapter-9/radiation-pachube-sketch

 and check millis() for when it wraps around

 Ethernet shield attached to pins 10, 11, 12, 13

 http://www.tigoe.net/pcomp/code/category/arduinowiring/873
 This code is in the public domain.

 Modified autumn 2011 by Patrick Di Justo, based on code by Tom Igoe
*/

#include <SPI.h>
#include <Ethernet.h>

// assign a MAC address for the Ethernet controller.
// Newer Ethernet shields have a MAC address on a sticker on the shield
// fill in your address here:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xCA, 0xFE};

// initialize the library instance:
EthernetClient client;
// last time you connected to the server, in milliseconds
long lastConnectionTime = 0;
// state of the connection last time through the main loop
boolean lastConnected = false;
// delay between updates to Pachube.com
const int postingInterval = 15000;

int minuteFactor = 60000 / postingInterval;

int geiger_input = 2;
long timePreviousMeassure = 0;
long countPerMinute = 0;
long count = 0;
float radiationValue = 0.0;

// Define the SPI pin for the SD Card
#define SD_CARD 4

//This is the conversion factor for the SBM-20 radiation detection tube
#define CONV_FACTOR 0.0057

// replace the Xs with YOUR Pachube feed ID:
#define SHARE_FEED_ID XXXXX

// replace the Xs with your Pachube API key:
#define PACHUBE_API_KEY "__YOUR KEY HERE__" // fill in your API key

void setup()
{

Project: Radiation Counter/Sharing Data on the Internet 73

 // If using the Wiznet SD card/Ethernet shield, these two lines
 // are absolutely necessary to temporarily disable the SD card
 // so that the Ethernet port will work.

 pinMode(SD_CARD, OUTPUT);
 digitalWrite(SD_CARD, HIGH);

 // start serial port:
 Serial.begin(9600);
 // start the Ethernet connection:
 delay(1000);

 if (Ethernet.begin(mac) == 0)
 {
 Serial.println("Failed to configure Ethernet using DHCP");
 // no point in carrying on, so do nothing forevermore:
 for(;;)
 ;
 }

 // give the Ethernet module time to boot up:
 delay(1000);

 // Set the Geiger counter input to HIGH so we can tell when it
 // changes. We are going to use Arduino interrupt 0, connected
 // to digital pin 2, which we are using for geiger_input.

 pinMode(geiger_input, INPUT);
 digitalWrite(geiger_input,HIGH);

 attachInterrupt(0,countPulse,CHANGE);
}

void loop()
{
 if (millis()-timePreviousMeassure > postingInterval)
 {
 countPerMinute = count*minuteFactor;
 radiationValue = countPerMinute * CONV_FACTOR;
 timePreviousMeassure = millis();
 Serial.println(count);
 Serial.print("cpm = ");
 Serial.print(countPerMinute,DEC);
 Serial.print(" - ");
 Serial.print("uSv/h = ");
 Serial.println(radiationValue,4);
 count = 0;
 }

 // if there's incoming data from the net connection.
 // send it out the serial port. This is for debugging

74 Environmental Monitoring with Arduino

 // purposes only:
 if (client.available()) {
 char c = client.read();
 Serial.print(c);
 }

 // if there's no net connection, but there was one last time
 // through the loop, then stop the client:
 if (!client.connected() && lastConnected) {
 Serial.println();
 Serial.println("disconnecting.");
 client.stop();
 }

 // if you're not connected, and ten seconds have passed since
 // your last connection, then connect again and send data:
 if (!client.connected() && (millis() - lastConnectionTime >
postingInterval)) {
 sendData(radiationValue);
 }

 // store the state of the connection for next time through
 // the loop:
 lastConnected = client.connected();
}

void countPulse()
{
 detachInterrupt(0);
 count++;
 digitalWrite(13,HIGH);
 while(digitalRead(2)==0){}
 digitalWrite(13,LOW);

 attachInterrupt(0,countPulse,CHANGE);
}

// this method makes a HTTP connection to the server:
void sendData(int thisData) {
 // if there's a successful connection:
 if (client.connect("www.pachube.com", 80)) {
 Serial.println("connecting...");
 // send the HTTP PUT request.
 // fill in your feed address here:
 client.print("PUT /api/");
 client.print(SHARE_FEED_ID);
 client.print(".csv HTTP/1.1\nHost: pachube.com\nX-PachubeApiKey: ");
 client.print(PACHUBE_API_KEY);
 client.print("\nContent-Length: ");

 // calculate the length of the sensor reading in bytes:

Project: Radiation Counter/Sharing Data on the Internet 75

 int thisLength = getLength(thisData);
 client.println(thisLength, DEC);

 // last pieces of the HTTP PUT request:
 client.print("Content-Type: text/csv\n");
 client.println("Connection: close\n");

 // here's the actual content of the PUT request:
 client.println(thisData, DEC);

 // note the time that the connection was made:
 lastConnectionTime = millis();
 } else
 {
 // if you couldn't make a connection:
 Serial.println("connection failed");
 }
}

// This method calculates the number of digits in the
// sensor reading. Since each digit of the ASCII decimal
// representation is a byte, the number of digits equals
// the number of bytes:

int getLength(int someValue)
{
 // there's at least one byte:
 int digits = 1;
 // continually divide the value by ten,
 // adding one to the digit count for each
 // time you divide, until you're at 0:
 int dividend = someValue /10;
 while (dividend > 0) {
 dividend = dividend /10;
 digits++;
 }

 // return the number of digits:
 return digits;
}

What Are We Measuring with This
Gadget?
This gadget is measuring radiation in “counts per minute” (CPM), which at
this writing is the most commonly used increment for sharing DIY radiation
counter data on Pachube. Each time a subatomic particle ionizes the gas

76 Environmental Monitoring with Arduino

molecules in the detection tube, thus closing the circuit, Arduino registers
that as one count.

We use CPM because we can’t assume that DIY radiation detectors are cali-
brated to an official standard. The detector tube used in this build claims to
have a factor that can convert counts per minute into sieverts, a unit of ra-
diation measurement commonly used by scientists. But since most of us
don’t have access to the kinds of laboratory facilities that would allow us to
confirm this calibration, counts per minute are the best units to use.

Taken over weeks, months, and years, CPM give us a useful qualitative
measurement of radiation levels, rather than a quantitative measurement.
That is, the readings can tell us if the radiation level changes dramatically,
such as jumping from 50 to 150CPM. A significant increase like that might
be worth looking into, even if we don’t know exactly what it means in sieverts.

Failure Mode Analysis
This is the most complicated project in the book, so it would be amazing if
your gadget worked perfectly the first time. It took us nearly a week to get
all the pieces of our gadget working.

So don’t be discouraged if, on your first try, your Pachube data is a big flat
line of nothing.

Remember, the first point of our workbench philosophy back in Chapter 1 is
to break it down when something doesn’t work.

So, break it down:

• Check your build: Be sure the gadget is assembled correctly.

• Next, mentally divide the project in two parts: input (what comes into
Arduino) and output (what goes out of Arduino).

— Input:

— Does your Geiger counter detect background radiation?

— Does your Arduino successfully record each flash of the Geiger
counter?

— Does the data show up in the serial monitor?

— Once you’ve gotten the input working, don’t fiddle with it.

— Output:

— Does your Arduino show up on your local network?

— Did you run the Arduino web page and Arduino Pachube example
sketches successfully?

Project: Radiation Counter/Sharing Data on the Internet 77

— Did you replace the values in the sketch with your IP address,
gateway, subnet mask, and Pachube API code?

Troubleshoot your gadget methodically, changing only one thing at a time
until you’ve solved a particular problem—and then simply move on to the
next. Also, remember that it’s okay to ask for help--both online on Arduino
forums and at your local hacker space.

Uploading data successfully to Pachube was the
hardest part of building this gadget for us. In the
process we learned a valuable lesson: always use
the most recent tutorial on the Pachube website. At
the time of this writing, there are still tutorials from
2009 on the Pachube website. These are worthless.
Find the most recent tutorials.

Things to Try
1. If you find yourself in possession of a few bags of high-potassium com-

mercial fertilizer, or potassium chloride water softener tablets, or po-
tassium chloride ice/snow melter, or potassium-based salt substitute,
or even a bowl of Brazil nuts, try getting a radiation measurement from
them with your Geiger counter. It’s not difficult to get a reading that’s
twice the normal background radiation. The key is the potassium:
household items that are high in potassium are very slightly more radi-
oactive than other objects. This is because elemental potassium has a
naturally occurring isotope called potassium-40 (about 1 in every 8,000
atoms), which is very slightly radioactive. (We keep emphasizing very
slightly so that you don’t panic at the sight of a bunch of bananas, which
are high in potassium.) This very slight radioactivity is more than enough
to be detected by your Geiger counter.

2. Rather than using the preassembled Geiger counter, buy a kit, such as
Electronic Goldmine’s Sensitive Geiger Counter Kit (sku C6979), and
build it yourself. Note: This kit requires intermediate-level soldering
skills; we recommend it for makers who have accomplished at least a
few successful soldering projects.

78 Environmental Monitoring with Arduino

http://www.goldmine-elec-products.com/prodinfo.asp?number=C6979

10/Casing the Gadget

If you want to take your Arduino gadget mobile, or simply protect it from
dust, you’ll need to secure it inside some sort of portable, durable case.
Properly, such cases are called “Arduino project enclosures.”

Since almost any smallish, box-like object has enclosure potential, this is an
arena where your creativity can really take off. Just browse any retail store
specializing in home, school, and office storage products, and your head will
start to spin with the possibilities.

Also, don’t forget to think outside the enclosure box! Hardware stores, dollar
stores, craft stores, toy stores—these and more have all sorts of products
that may inspire you to adapt, or to design and create, a totally original con-
tainer to enclose your gadget.

You can also check out DIY websites like Instructables and MAKE Maga-
zine for ideas and examples.

All this said, building enclosures does add time to a project, and doesn’t
appeal to everyone. So in the last few years, a variety of ready-made Arduino
project enclosures have become available for purchase, often at the same
sites that sell electronic components.

While we don’t endorse any particular enclosure, here are a few suppliers
and products to consider:

Adafruit Industries: Enclosure for Arduino (ID: 271) Clear Enclosure for
Arduino (ID: 337)

SparkFun Electronics: Crib for Arduino (sku: PRT-10033) Arduino Project
Enclosure (sku: PRT-10088)

Solarbotics: Solarbotics Arduino Freeduino Enclosure (sku: 60100)

Nathan Masuda’s Shapeways Shop: Stackable Arduino Enclosure

More enclosures may be on the market by the time you read this book, so
be sure to look around online, or ask friends at your local hacker space what
they recommend.

79

http://www.instructables.com
http://www.makezine
http://www.makezine
http://www.adafruit.com
http://www.sparkfun.com
http://www.solarbotics.com
http://shpws.me/F2Z

	Contents
	Preface
	How to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. The World’s Shortest Electronics Primer
	What Is Arduino?
	Electronic Circuits and Components
	Programming Arduino
	First Sketch: Make an LED Blink
	Parts
	Install the IDE
	Breadboard the Circuit
	Write the Code
	Things to Try

	Chapter 2. Project: Noise Monitor/LED Bar Output
	Measuring Noise: The Microphone
	The LED Bar

	Make the Gadget
	Parts
	Breadboard the Circuit
	Write the Code
	Things to Try

	Chapter 3. New Component: 4Char Display
	Test Project
	Parts
	Breadboard the Circuit
	Write the Code
	Things to Try

	Chapter 4. Detecting Electromagnetic Interference (and making bad music)
	Detecting EMI Sources in the Environment
	Make the Gadget
	Parts
	The 8-Ohm Speaker
	Construct the EMI Monitor
	Write the Code
	Run the Sketch
	Powering the Gadget in Mobile Mode

	What Are We Measuring with This Gadget?
	Things to Try

	Chapter 5. Project: Water Conductivity/Numerical Output
	What Is Conductivity, and Why Do I Care?
	Make the Gadget
	Parts
	Construct the Probe
	Breadboard the Circuit
	Write the Code
	How to Take a Reading
	Things to Try

	Chapter 6. New Component: Ethernet Shield
	Using the Ethernet Shield
	The Ethernet Port
	The MAC Address
	The IP Address
	Find your router’s IP address: Windows
	Find your router’s IP Address: Mac

	The SD Card Slot

	Testing the Ethernet Shield
	Parts
	Assembly

	Testing the SD Card Slot
	Parts
	Assembly

	Things to Try

	Chapter 7. Project: Humidity, Temperature & Dew Point/4Char Display
	You Don’t Have to Be a Weatherman to Measure the Weather
	Getting Usable Measurements
	First Electronic Sensor: The DHT-22
	Using Code Libraries
	Make the Gadget
	Parts
	Breadboard the Circuit
	Write the Code
	Things to Try

	Chapter 8. Real-Time, Geo-Tagged Data Sharing with Pachube
	Test Project: Connecting and Uploading Data to Pachube
	Parts
	Open a Pachube Account
	Write the Code

	Things To Try

	Chapter 9. Project: Radiation Counter/Sharing Data on the Internet
	What’s a Geiger Counter?
	Make the Gadget
	Parts
	Breadboard the Circuit
	Write the Code

	What Are We Measuring with This Gadget?
	Failure Mode Analysis
	Things to Try

	Chapter 10. Casing the Gadget

